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Abstract

The cornea acts as a transparent shield protecting the eye from germs, dust and pathogens as
well as regulating the ocular environment by controlling the diffusion of external substances
like oxygen or drugs via the tear film into the intraocular tissues. The design and development
of an intraocular-drug delivery device highly depend upon the understanding of the interactions
between the biological system of the eye and the drug-ophthalmic material complex. In vivo
models have been used in clinical studies as the necessary and most valid testing platforms for
regulatory authorities, but animal experiments have always been widely criticized for ethical
and economical reasons. Furthermore, when studying interactions in the eye environment,
using animal models has other disadvantages such as difference in blinking patterns, tear
composition, and organ size when compared to the human eye. Therefore, in vitro cell culture
models using human cells have been considered as a powerful pre-screening tool for drug
testing to study interactions with the ocular tissue. In vitro models also provide an experimental
environment, in which each parameter can be controlled. With a lower complexity level and
less variability, in vitro models allow gaining a better understanding of the parameters involved
in the drug delivery system.

Using eye drops for ocular drug delivery to the anterior section of the eye is a significant
challenge due the rapid washout in tears and the corneal barrier to drug diffusion. Therefore
mimicking this environment in vitro can help in designing more robust drug delivery system
for the front of the eye.

This research focuses on the application and characterization of an in vitro human corneal
model which mimics in part the in vivo environment to assess corneal interaction with the
drug/biomaterial complexes. In this project, an in vitro model using human corneal epithelial
cells is used to characterize the drug release profile and transport from commercially available
contact lenses. Three model drugs for treatment of glaucoma, eye inflammation and infection
respectively were tested in combination with two commercial contact lenses with different
surface chemistry and their release profiles were measured. The effects of biological
transporters on the controlled release systems were investigated. The role of organic anion

transporter protein OATP 2A1 (prostaglandin transporter) in transcellular transport of



Latanoprost was characterized and the presence of its gene in the HPV16 E6/E7 immortalized
corneal epithelial cell line was verified by real-time polymerase chain reaction. To assess the
role of OATP 2A1, transporters were inhibited by Diclofenac sodium and the release kinetics
of Latanoprost from Pure Vision® (balafilcon A) and Acuvue Oasys® (senofilcon A) contact
lenses in three in vitro conditions with live corneal cells monolayer, fixed epithelial cells and
transporter inhibited epithelial cells were studied.

The presence of corneal epithelial cells in vitro had a significant effect on release kinetics of
Latanoprost resulting in a zero-order release profile. Complete inhibition of the OATP 2A1
transporter reduced the release rate of Latanoprost by 30% and 52% from balafilcon A and
senofilcon A respectively. Comparison between live, fixed and transport inhibited models
indicated that Latanoprost transport occurred mainly through the active transcellular pathway
but was not mediated only by OATP 2A1. Other transporters might be involved in the transport
and further research is required to identify these.

The effect of initial loading concentration of Latanoprost on release rate and amount of drug
eluted from contact lenses was also investigated. Reduction in initial loading concentration of
the drug increased the released percentage of the drug from 6.9% to 14.1% for balafilcon A
and from 11.4% to 57.3% for senofilcon A. Both silicone hydrogel contact lenses, regardless
of initial loading concentrations, released Latanoprost at above therapeutic daily dose up to 96
hours with zero-order constant rate.

The release kinetics of two hydrophilic ophthalmic drugs, Ciprofloxacin HCI and Timolol
Maleate also from the soft contact lenses were evaluated in the corneal in vitro model over 48
hours. The effect of corneal epithelial barrier on the release kinetics of these hydrophilic drugs
was evaluated. The release kinetics of hydrophilic Ciprofloxacin HCI and Timolol maleate
followed a first-order rate. The presence of corneal epithelial cells in vitro had no significant
effect on the release rate of hydrophilic drugs. However, presence of cells (live or fixed) acted
as a diffusion barrier by decreasing the amount of Ciprofloxacin released from silicone
hydrogel contact lenses compared to no-cell in vitro model. No significant difference in
released amount of Timolol was observed between live, fixed and no cell in vitro models

Our results further confirmed the effect of chemical interaction between drug molecules and

contact lens polymer on a controlled release system and the importance of selecting the

iv



appropriate in vitro model. Testing conditions and presence of biological barriers provided by
cells can have a significant impact on release profile and provided a more realistic test platform
for studying the release kinetics for the ocular environment. All in all, this thesis confirms the
importance of proper selection of in vitro test models for the assessment of ocular drug delivery
system and suggests that commercially available silicone hydrogel ocular materials may be

used effectively for the release of hydrophobic therapeutics.
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Chapter 1

Introduction

Topical drug delivery to the eye remains a significant challenge for scientists and engineers
due to the unique anatomy of the eye and its physiology, that lower the bioavailability of topical
ophthalmics administration to less than 5% (Sjoquist et al., 1998). The main route for drug delivery
to the anterior eye is the cornea (Gaudana et al. 2009, 2010). The cornea is a transparent functional
barrier protecting the eye from infections, the entrance of germs, dust or pathogens as well as
regulating the internal environment of the eye by controlling the diffusion of external substances
or drugs into the intraocular tissues. Development of new treatments for corneal injuries and the
design of effective intraocular drug delivery systems highly depend upon the understanding of how
the visual organ works and the biological roles of each tissue in the eye (Castro-Mufiozledo, 2008).
As part of the development and design of such systems, studying cytotoxicity and biocompatibility
of biomaterials/drugs used for the treatment of eye diseases/injuries or controlled released systems
is paramount, and relies on comprehension of the biological interactions between biomaterials, the
drugs and the biological hosts (Williams, 2014, 2008). In other words, each biomaterial-drug-host
complex has its own characteristics and must be studied as a system (Williams, 2014).

To develop drug delivery systems and characterize biocompatibility requires experimental models,
such as in vitro, in vivo or ex vivo models, where toxicity, efficacy and other parameters can be
tested. Animal models, still used as the most valid test beds for regulatory authorities in clinical
studies, have always been criticized due to ethical issues since a high number of animals has to be
sacrificed to collect sufficient tissue samples. While in vivo experiments cannot be removed
completely to obtain approval for clinical studies, there is a strong call to reduce the number of
required in vivo experiments to a minimum (Hornof et al., 2005). Furthermore using animal models
to study ocular materials and drug delivery systems has some other disadvantages such as inter-
sample variations, different blinking patterns and tear composition than human and different organ

size/surface compared to the human eye (Urtti and Salminen, 1993). The development of in vitro



models using human cell lines has thus been considered as a powerful pre-screening tool for
studying the tissue barrier function and tissue regulations as well as for testing pharmaceuticals.
Furthermore, in vitro models provide controlled experimental conditions, in which each parameter
can be regulated to obtain more reproducible results in comparison to the more complex ex vivo
studies with dissected animal tissues or in vivo tests (Hornof et al. 2005; Reichl et al. 2011).
Therefore in order to use in vitro cell culture instead of animal models and extract meaningful
information from in vitro cell interactions with drugs and biomaterials comparable to in vivo and
clinical results, it is crucial to design an in vitro model which addresses the key natural
characteristics of the extracellular matrix (ECM) as well as the biophysical, biochemical and
biomechanical properties of the native cell niche in the tissue (Bacakova et al., 2011; Castro-
Mufiozledo, 2008).

This research thesis aimed to characterize a corneal in vitro model and assess the role of live
corneal epithelial cells in application of this model for testing controlled delivery of ophthalmics.
This thesis starts with an introduction to the anatomy of the eye and the cornea, and ocular drug
delivery concepts in Chapter 2. In this chapter, ocular barriers and corneal transporters are briefly
reviewed; glaucoma, Latanoprost and silicone hydrogel contact lenses are introduced and ocular
in vitro models discussed. In Chapter 3, a corneal epithelial in vitro model is described and
characterized for ocular transporters. The results on the role of transporters in Latanoprost
transcorneal permeation are reported. Chapter 4 presents the release kinetic studies of Latanoprost
from silicone hydrogel contact lenses in different corneal in vitro models. Chapter 5 reports the
examination of corneal in vitro model for assessment of hydrophilic drugs release from silicone
hydrogel contact lenses. Finally, Chapter 6 and Chapter 7 present the conclusions and

recommendations for future work, respectively.



Chapter 2

Background

2.1 Human Eye

Eyes are complicated organs through which we sense and comprehend the outside world.
As a vital organ, the eye is protected by the surrounding bones in the skull called the bony orbit.
The eyeball (globe) is also wrapped in layers of fat and supporting tissues for protection and
stability (Lens et al. 2008). Figure 2-1 schematically illustrates the overall topographic anatomy
of the human eye. As shown in the figure, the globe is not completely round and is made of two
merged unequal spheres joined at the junction of the cornea and the conjunctiva. The sagittal
diameter of an adult globe is about 24 mm and its volume is about 6.5 ml. The weight of the globe
is about 28 grams. The most outer skeleton of the eye is formed by the fibrous envelope of the
cornea and the sclera. The cornea is shaped like an ellipsoid and covers about 20% of the eye total

surface. The remainder 80% of the globe surface is covered by the sclera (Rodrigues, 1996).
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Figure 2-1 Schematic presentation of human eye (adapted with permission from CC: By Holly Fischer, © Regents
of the University of Michigan http://creativecommons.org/licenses/by/3.0/)
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The globe can be divided into two asymmetric portions namely the anterior segment and
the posterior segment. The posterior segment is larger (two third of the eye globe) than the anterior
part and includes the structures posterior to the lens such as the choroid, macula, retina, posterior
sclera and optic nerve. (Figure 2-1). The posterior segment is filled by a gel like fluid called the
vitreous humor. The anterior segment (also called the front of the eye) consists of the pupil, the
crystalline lens, cornea, iris, conjunctiva and ciliary body. The anterior segment is divided by the
iris into the anterior and the posterior chambers which are filled by the aqueous humor (Rodrigues,
1996, Lens et al. 2008). The light is first refracted through the cornea and then via the pupil passes
through the lens and the vitreous humor until it reaches the visual receptor cells of the retina called
rods and cones, which convert the light to nerve impulses. These impulses are transmitted to the
brain via optic nerves for further visual processing (Lens et al., 2008). The eye is comprised of
several components and layers. However, only the structures relevant to this thesis will be

reviewed in the next sections.

2.1.1 Cornea

The cornea is the strongest refractive component of the entire visual system and the main
chemical and mechanical barrier of the anterior eye which protects the anterior segment and the
intraocular tissues from external substances and contaminations (Lens et al. 2008). The cornea is
transparent, avascular and consists of three cellular layers and two acellular supporting membranes
with a thickness of ~ 500um (Huhtala et al., 2008). The outmost apical part consists of 5-6 layers
of stratified non-keratinized squamous corneal epithelium cells supported by the Bowman’s
membrane basally and covered by the tear film laterally (Lens et al., 2008). The top superficial
epithelial cells are flattened and are connected to each other with desmosomes and tight junctions
and form a strong diffusional barrier against exogenous materials. Beneath the superficial cells are
2-3 layers of wing cells followed by a monolayer of columnar basal cells attached to the Bowman’s
membrane. Proliferation occurs at the basal cells and cells differentiate and stratify as they
propagate and move upward to wing cells and then to flattened superficial cells. Corneal epithelial
cells eventually shed from the top layer at the surface and will be replaced by the cell layers beneath

(Lens et al., 2008). The main role of the Bowman’s membrane is to act as a supporting ECM for



epithelial cells; its surface topography is porous with micro to nano sized pores, bumps and fibers
which are stochastically dispersed (Garland et al., 2014). Under the Bowman’s membrane is the
stroma which represents ~90 percent of the corneal thickness. It contains arranged collagen fibers,
proteoglycans and fibroblastic keratocytes (stromal cells) and lies on the Descemet’s membrane,
which separates the stroma from a monolayer of polygonal endothelial cells. Endothelial cells
separate the cornea from the aqueous humor and are responsible for keeping the stroma slightly
dehydrated and clear. However, the transparency of the cornea also relies on other factors such as
fast proliferation of basal epithelial cells, homeostasis and metabolic activity of keratocytes and
the endothelium as well. Figure 2-2 presents a cross-section of a human cornea (Barar et al., 2008;
Hornof et al., 2005; Huhtala et al., 2008; Reichl et al., 2011). The different layers of the corneal
epithelium are clearly distinguishable in Figure 2-2.B (Reichl et al., 2011)
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Figure 2-2 A cross-section of the human cornea (A). The cornea consists of the epithelium, the stroma and
endothelium cell layers. The corneal epithelium has five to six cell layers (B). Magnified cross-section of corneal
epithelial cells illustrating the flattened superficial cell layers, wing cells and columnar monolayer attached to
Bowman’s membrane. Proliferation occurs at the basal layer and the cell differentiation happens to wing cells as
they grow. At the apical surface, cells become flattened and form a tight barrier (adapted with permission from
Reichl et al., 2011)



The corneal surface is covered by a thin film of tear, renewing with a turnover rate of 0.5-2.2ul/min
in humans (Mishima et al., 1966). The tear film is responsible for lubrication of the cornea and
since it is located at the air-eye interface, it also provides oxygen and nutrients to it. It partially
refracts light and also contributes to light refraction by maintaining the corneal surface clear and
distortion free (Rodrigues, 1996). The tear film is also a diffusional barrier against drugs and
exogenous materials via lacrimal drainage (Hornof et al. 2005; Lens et al. 2008). The tear film
structure is illustrated in the Figure 2-3. The tear film is believed to consist of four immiscible
layers (over the last decades, there has been several debates about the layering of the tear film
(Butovich et al. 2008; Green-Church et al. 2011; Prydal and Campbell, 1992; Sullivan, 1994). The
inner mucin layer is 0.2-0.5um in thickness and helps to attach to the hydrophobic ocular surface.
The intermediate aqueous layer is 6-7um in thickness and contains inorganic salts, glucose, urea,
proteins, glycoproteins and surface active polymers. This central layer is responsible for
lubrication of the ocular surface while blinking. The outer lipid bilayer with a thickness of ~0.1um
is composed of an outer nonpolar layer in contact with the air interface guarding against water
evaporation and an inner polar layer, responsible of stabilizing the outer layer. It mainly contains

low polar lipids and waxy esters (Green-Church et al., 2011).
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Figure 2-3. A proposed model for the structure of the precorneal tear film (taken with permission from Butovich
et al., 2008)



2.2 Ocular Drug Delivery

In the design and development of ophthalmics, it is critical to consider parameters such as
bioavailability (a measurement of the rate and amount of a drug that reaches the target site in an
unchanged chemical form via blood circulation system (Griffin and Grady, 2002); drug delivery
system, tolerability and stability of the final drug formulations; the commercial drug system must
be an ideal compromise of these parameters (Ali and Lehmussaari, 2006). To deliver the drug to
the target site, a drug carrier strategy is needed which leads to design of a drug delivery system. A
drug delivery system can also be designed as a controlled release system to minimize the pulsatile
variation of drug concentration at the target tissue and keep it at the effective therapeutic levels
and below toxic levels in the period of treatment (Figure 2-4) (Novack, 2009). This system must
be also stable in the physiological environment and be tolerated by the site of action (target tissue)
(Griffin and Grady, 2002).

Due to the unique anatomy and physiology of the eye and the presence of various barriers,
ocular drug delivery in a sustained and controlled manner has been a major challenge for scientists
and pharmacologists in the design of ophthalmic drug delivery systems ( a Urtti, 2006). In general,
drug delivery to the eye is classified into anterior and posterior segments. The majority of the
anterior eye diseases are usually treated by conventional drug delivery dosage forms such as
topically instilled ophthalmic eye drops (solutions), ointments, gels and suspensions (Gaudana et
al., 2009). Medications applied to the outer surface of the eye for treatment of infections are also
classified into anterior segment drug delivery systems. Injectable drugs, oral doses and ocular
inserts are other types of conventional dosage which are used when the active ingredient is
topically impermeable or the target site is not accessible by topical administration (Lang, 1995).
However, these methods are not efficient and each has drawbacks such as blurring vision, low
bioavailability, low drug penetration to the anterior chamber and poor patient compliance. For
topically administered ophthalmics, most of the applied dose is rapidly washed out by tear fluid
turnover, blinking and through the lacrimal drainage; less than 5% of the drug is actually absorbed
to the ocular surface due to lacrimal drainage and tear fluid turnover (Sjoquist et al. 1998).
Therefore a frequent dose application by the patient is required, which may increase pulsatile

variations in the drug concentration. Increasing the dose or the frequency of administration may
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also cause ocular toxicity (Figure 2-4). Low stability and presence of preservatives and penetration
enhancers in the formulation of these ophthalmics are also other disadvantages pertaining to the
conventional dosages. In the design of ocular drug delivery systems, these problems can be solved
with various approaches by extending residence time of the drug, providing controlled release,

designing prodrugs, using carriers and transporters/receptors and more local delivery by implants
(Ciolino et al., 2009; White et al., 2011a).
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Figure 2-4. Drug concentration in the tear film after topical administrations. Graph A represent the conventional
frequent application with a high dose which may reach to the toxicity threshold. Graph B shows a low dose
application which is not efficient. Graph C represent the ideal dosing at a constant rate which keeps the drug
concentration at therapeutic level. (taken with permission from White and Byrne 2010)

2.2.1 Ocular barriers

There are several possible routes of ocular drug delivery into the ocular tissues and various
cellular membranes and barriers control the transport of fluids and solutes into the eye as well as
effectively hamper the penetration of exogenous molecules, pathogens and unfortunately ocular

therapeutics. Hence, in the design of an ocular drug delivery system, the functionality and
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characteristics of these biological barriers must be fully understood and addressed (Barar et al.,
2008; Hornof et al., 2005; Urtti, 2006). Figure 2-5 illustrates the biological barriers of the eye.
Topically administered drugs are adsorbed through the anterior segment including the cornea,
sclera and conjunctiva while oral dosage and systematically administered drugs penetrate into
intraocular tissues via the blood-retina barrier (BRB) and blood-aqueous barrier (BAB).
Intravitreal injection is another route (invasive method) to reach to the vitreous humor. BRB
surrounds the posterior segment of the eye and includes two layers of inner retinal capillary
endothelial cells and outer retinal pigment epithelium. The presence of tight junctions in the retinal
epithelium and endothelium makes the BRB a strict barrier against traverse of nutrients, proteins
and small hydrophilic compounds (del Amo and Urtti, 2008; Gaudana et al., 2009; Hughes et al.,
2005). The BAB is located at the anterior part of the eye (Figure 2-5) and consists of two cellular
layers of the endothelium of the iris/ciliary blood vessels and the non-pigmented ciliary epithelium.
This barrier controls the traverse of solutes, large molecules and proteins into the aqueous and
vitreous humors and is responsible for keeping the intraocular fluids clear. The small and lipophilic
drugs in the vitreous humor are eliminated through the BAB while larger hydrophilic drugs are

washed away by aqueous humor turnover (Barar et al., 2009, 2008).
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Figure 2-5. Schematic illustration of the biological barriers in the human eye. The first barrier against installed
drugs is the tear film (0). The cornea is the main route of transport for topically administered (1). The conjunctival
and scleral route has a lesser hydrophilic drugs (2). Iris blood vessels are the routes for drug with small molecules
to penetrate from the systemic circulation into the anterior chamber (3). The drugs are washed out of the anterior
chamber either by aqueous humor outflow via trabecular meshwork (4) or by diffusing across the iris surface via
by venous blood flow (5). Systemically administered drugs can diffuse into or be removed from the vitreous
through the blood-retinal barrier (6, 8). Intravitreal injection is another route (invasive method) to reach to the
vitreous humor (7). Drugs can diffuse into the anterior chamber from the vitreous humor (9) (taken with
permission from Barar et al., 2008).

Most of the anterior segment diseases are usually treated by topical administration. Topical
penetration routes for ocular drug delivery are classified into corneal and non-corneal (conjunctiva
and sclera) routes. The corneal route is the major pathway for topical ocular drug delivery while
the non-corneal route is considered to be inefficient for most of ophthalmics since drugs
penetrating through the conjunctiva and sclera are eliminated into the systematic circulation via
local capillary beds. Although the cornea is the main route of drug penetration, the presence of the
corneal epithelium makes it the rate limiting barrier against drugs, and the permeability of
compounds highly depends on the size and physiochemical characteristics of the drug molecules.
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Large and hydrophilic drugs are mostly absorbed through the conjunctiva and sclera while small
hydrophobic drugs penetrate through the cornea into the aqueous humor (Barar et al., 2009, 2008;
Hornof et al., 2005; Urtti, 2006). Figure 2-6 illustrates the cellular organization of the cornea with
its various transport barriers. As mentioned earlier, the corneal epithelium consists of superficial
cell layers, wing cells and basal cells which are connected together with desmosomes and tight
junctions making a strong barrier with just 10-20 nm cavities between cell layers. Tight junctions
are part of the epithelial cell membranes at the apical side where two cells fuse together and make
atight barrier so that exogenous materials cannot pass between two interacting cells; the superficial
cell monolayer then regulates the passage of molecules via transcellular active transport (see
below). Desmosomes are molecular complexes of cell adhesion and linking proteins which are
responsible for attachment of cell surface adhesion proteins to intracellular keratin cytoskeletal
filaments (Hall, 1990; Sunkara and Kompella, 2003).

There are two parallel penetration pathways through the cornea:

- paracellular transport, which is driven by passive diffusion between the cells across the

continuous corneal epithelium

- transcellular transport, which is mediated actively by cellular receptors and carriers through

the lipid bilayer of the cell membrane.

Paracellular transport is limited by the size and charge of permeating molecule whereas
transcellular movement depends on the interaction between transporters/receptors and the drug
molecules (Dey et al., 2003). The mechanism of topical drug absorption to the cornea is a
combination of both transports although, based on physiochemical characteristics of the drug
molecules, one of them is the dominant transport pathway (Huang et al., 1983; Schoenwald and
Huang, 1983). Epithelial cells selectively control the transport of hydrophilic compounds that can
easily pass through the stroma and endothelial cells. On the other hand, hydrophobic drugs have a
higher transcellular permeability through the corneal epithelial cells but have a lower permeability

through the stroma (Mannermaa et al., 2006).
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Figure 2-6 Cellular organization of the cornea showing its various transport barriers. Topmost layers of epithelial
cells with tight junctions make a strong barrier monolayer. The basal endothelial monolayer is more permeable.
(taken with permission from Barar et al., 2008)

2.2.2 Corneal Transporters

Membrane transporters/receptors play a critical role in transport processes of drugs, absorption,
distribution and elimination of nutrients, ions and solutes in and out of the ocular cells. As
mentioned in the previous section, corneal epithelial cells impose a tight barrier against xenobiotics
and drugs, protecting the anterior part of the eye while the blood—retina barrier controls the traverse
of systematically administered drugs to the posterior segment. By revealing the functional role of
transporters/receptors, it has become evident that they are critically important in pharmacokinetics
of ophthalmic drugs (Nies et al. 2011). Studying the transport processes existing in ocular barriers
and selecting the proper drug delivery strategies utilizing these transporters and receptors can

significantly improve the drug bioavailability to the target ocular tissue (Barnstable, 2008).
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In ocular tissues, the two principal families of transporters are the efflux transporters (export
pumps) and the influx transporters (uptake pumps). Influx transporters mediate the uptake of
substances from the extracellular space into cells, and efflux transporters facilitate the secreting of
substances out of cells. Figure 2-7 presents the currently known transporters of the corneal
epithelium. The influx transporters in the cornea include amino acid transporters (LAT1, ATBO+,
and ASCT1), oligopeptide transporters (PepT1, PepT2, PHT1 and PHT2), monocarboxylate
transporters (MCT), nucleoside transporters (CNT3) and organic anion transporting polypeptides
(OATP2). Most of these influx transporters belong to the solute carrier (SLC) superfamily. The
efflux transporters consist of P-glycoprotein (P-gp), multidrug resistant protein (MRP) and breast
cancer related protein (BCRP). All of these efflux transporters belong to the ATP binding cassette
(ABC) superfamily (Barnstable, 2008; Dey et al., 2003; Mannermaa et al., 2006).

Organic Anion Transporter Proteins (OATP2A1)
are known responsible for transcellular transpot <————
of prostaglandins in corneal epithelial cells

— Transcellular route

Tear fluid

Paracellular route

Tight junction ~~ ‘

Aqueous humor

Figure 2-7. Schematic representation of the currently known transporters/receptors in the corneal epithelium
(taken by permission from Barar et al., 2008)
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Organic anion transporting polypeptides (OATPSs) are a group of membrane carriers with
a wide spectrum of amphiphilic substrates. Genes that encode for the OATPs are classified as the
SLCO family. The OATP family consists of 11 members including the prostaglandin transporter
OATP2A1 which is the shortest protein in its family with only 643 amino acids and is widely
expressed in ocular tissues and particularly in human cornea (Kraft et al., 2010; Science and Haven,
1997). Prostaglandins (PGs) play an important therapeutic role in treatment of human ocular
hypertension (glaucoma) and lowering the intraocular pressure (I0OP) (Kashiwagi et al., 2002;
Salvador, 1972). At physiological pH (7.0-7.4), PGs are charged anions and can poorly cross the
lipid bilayer of cell membranes. The transport of prostaglandin is mediated by OATP2Al
transporters in the ocular tissues (Science and Haven, 1997; Kraft et al. 2010).

2.3 Latanoprost and Glaucoma

Glaucoma is a disease affecting more than 60 million people worldwide and is known as
the second leading cause of irreversible blindness, happening often in elderly people. The number
of people suffering from glaucoma is estimated to reach 80 million worldwide by 2020 (Quigley
and Broman, 2006). In the United States alone, the number of people with glaucoma is
approximately 2.5 million leading to annual US healthcare costs of about $2.5 billion (Mills et al.,
2006).

Glaucoma is a group of ocular disorders mainly caused by ocular hypertension leading to
progressive optic nerve damage, loss of vision and visual field defects. Glaucoma is most often
due to increased IOP (Casson et al., 2012; Green, 1998). IOP is created by a dynamic balance
between inflow and outflow of aqueous humor in anterior and posterior chambers. The aqueous
humor is a watery fluid which is produced in ciliary body at a rate of ~2.5 pl/min (inflow), occupies
the anterior chamber (AC) and posterior chamber (PC) and drains through trabecular meshwork to
the canal of Schlemm (outflow). Normal IOP is in a range of 10-21 mmHg but when the balance
between inflow and outflow is disrupted, it will lead to an elevated IOP which causes ocular
hypertension and eventually optic nerve damage (glaucoma) (Lens et al., 2008).

Glaucoma can be categorized roughly into two main types, Open-Angle Glaucoma (OAG) and
Angle-Closure Glaucoma (ACG). However, there are five basic subtype of glaucoma which are
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clinically classified and are presented in the Table 2-1 (Casson et al., 2012). Primary open angle
glaucoma is the most common form of glaucoma accounting for more than 90% of US cases of
glaucoma patients (Mills et al., 2006). OAG has no symptoms other than elevated IOP until the
patient loses vision. ACG has acute symptoms such as headache, redness, blurred vision and pain
in the eye or even nausea and vomiting (Adatia and Damji, 2005). Although invasive surgical
techniques are sometimes used to treat the acute ACG, IOP reduction with medication is the most
common treatment strategy for all types of glaucoma, including normal tension glaucoma (NTG)
(Casson et al., 2012).

Table 2-1. Basic classification of the glaucomas (Casson et al., 2012)
Subtypes of Glaucoma Conditions

Primary Open-Angle Glaucoma (POAG) IOP is elevated but no pathological cause is identified.

Secondary Open-Angle Glaucoma (SOAG) | IOP is high and the cause of elevated 10P is clinically
identified.

Primary Angle-Closure Glaucoma (PACG) | A subtype of closed angle glaucoma with the elevated 10P but
no identifiable cause.

Secondary Angle-Closure Glaucoma Elevated IOP with Identifiable pathological cause
(SACG)
Normal Tension Glaucoma (NTG) A subtype of POAG where IOP is normal and no pathological

cause is identified.

Various categories of ocular hypertensive drugs containing active ingredients such as -blockers,
carbonic anhydrase inhibitors, prostaglandin analogues and a-adrenergic agonist or combinations
of them are used in the form of eye drops for lowering the IOP in early diagnosis of glaucoma
(Hariharan et al., 2009). Timolol Maleate, a B-blocker, was the first anti-glaucoma medication
introduced in 1978. Later in 80s and early 90s, several other selective and non-selective B-blockers
were introduced into the market. Apraclonidine and Brimonidine were a-adrenergic agonists

which were introduced in 1988 and 1996 respectively. The effect of prostaglandin analogues on
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lowering the IOP was reported first in 1985 and the first most potent prostaglandin prodrug to
receive FDA approval in 1996 was Latanoprost in 1996 (Shah et al., 2011). Prostaglandin F2a
analogues have shown an effective reduction of the IOP (Hariharan et al., 2009; Russo et al., 2008;
Sjoquist and Stjernschantz, 2002a; Sjoquist et al., 1998). Latanoprost is designed as a lipophilic
prodrug in which the carboxylic acid moiety in the a-chain has been esterified. Latanoprost is
hydrolyzed to the free-acid form to increase the bioavailability of the active drug into the eye (Fig
2-8) by esterases in the cornea. The Latanoprost free-acid is the pharmacologically active form of
the drug and increases the outflow of the aqueous humor at the trabecular meshwork (Toris et al.,
2008).

latanoprost

latanoprost acid in aqueous humor

and plasma

22-8. Chemical structure of Latanoprost and its respective free acid form (taken with permission from Sjéquist
and Stjernschantz, 2002a)

The marketed anti-glaucoma drug (Xalantan) contains 50 pg/ml of Latanoprost. The effective
adult recommended daily dose is one drop per affected eye which contains 1.5ug of Latanoprost
(Electronic Medicines Compendium, eMC www.medicines.org.uk). Clinical studies have shown
that the maximum concentration of Latanoprost active form (Latanoprost free acid) detected in
aqueous humor after 1-2 hour of administration is about 150-300 ng which is only 2% of the
applied dose (Sjoquist and Stjernschantz, 2002). However it has been shown that this amount
reduces the IOP effectively in open angle glaucoma patients for 24 hours (Diestelhorst et al., 1997;
Dubiner et al., 2004).
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The poor bioavailability of Latanoprost and the lack of compliance by patients can lead to further
vision impairment. Therefore designing a drug delivery system for Latanoprost which can increase
the drug ocular surface retention time and delivers the drug on an extended period of time, can
increase drug bioavailability while decreasing the frequency of administration and reliance on

patient compliance and can improve the prognosis of glaucoma patients.

2.4 Silicone Hydrogel Contact Lenses as drug delivery systems

To overcome the low bioavailability of the topical drug instillation, regardless of corneal
barrier and drug properties affecting absorption, one strategy is to increase the residence time of
the drug on the ocular surface. This objective has been achieved by various approaches such as
increasing the drug solution viscosity, using drug loaded gels, mucoadhesive formulations, ocular
inserts, nanoparticles, emulsions and therapeutic contact lenses. (Chaiyasan et al., 2013; Gaudana
et al., 2010; Lang, 1995). Among these, using contact lenses as a polymeric reservoir for
ophthalmic drugs has been viewed as the most convenient approach due to the high degree of
comfort, biocompatibility, and the potential for significantly increasing ocular drug retention time

and bioavailability.

Contact lenses were developed more than half a century ago for vision correction and since have
also been considered as an alternative for ocular drug delivery. First generation contact lenses were
made of poly(methylmetacrylate) (PMMA) which had many disadvantages including low oxygen
permeability and low water content (Guillon and Guillon, 1989; Robertson et al., 2007). The next
generations of contact lenses were developed based on poly-2-hydroxyethyl methacrylate
(PHEMA) (conventional contact lenses) with some also incorporating siloxane groups (silicone
hydrogel contact lenses). Silicone hydrogel contact lenses have excellent oxygen permeability, a
key characteristic for extended wear of contact lens. However, their hydrophobic surface chemistry
can be the cause of discomfort and tear film destabilization. The hydrophilicity (wettability) of
silicone hydrogels are significantly improved by surface treatment and incorporation of wetting
agents (Stapleton et al., 2006). US food and Drug Administration (FDA) has categorized soft
hydrogel contact lenses in four groups based on their water and ionic contents (Table 2-2). Silicone

hydrogel contact lenses mostly belong to group I and 111, which have a water content of less than
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50%. Table 2-3 summarizes the characteristics of common commercially available silicone

hydrogel contact lenses (Stapleton et al. 2006).

Contact lenses have been considered for ocular drug delivery for more than 50 years (Sedléacek,
1965). Several methods have been used to load and impregnate the contact lens with drugs in order
to get the optimum controlled release rate. These methods include drug soaking, molecular
imprinting and carrier/surfactant mediated release using nanoparticles and liposomes. for complete
reviews please refer to (Bengani et al., 2013; Guzman-Aranguez et al., 2013; Hsu et al., 2014;
White et al., 2011). Drug-soaked contact lenses are the most common and easiest technique to
obtain a release system for ophthalmics. Commercially available extended wear contact lenses,
particularly silicone hydrogels, can be promising platforms to be used for extended release of drug
to the anterior eye for treatment of diseases like glaucoma (Bengani et al., 2013; Kim et al., 2008).

Table 2-2. FDA classification of soft contact lenses (FDA Soft Contact Lens Grouping System 2014,
www.fda.gov)

*Group I-1V are conventional hydrogels and group V are silicone hydrogels

FDA-group Water Content (%) lonic content (%)
Group | below 50% below 0.2%
Group Il above 50% below 0.2%
Group Il below 50% above 0.2%
Group IV above 50% above 0.2%
Group V* (A) below 50% below 0.2%
Group V* (B) below 50% above 0.2%
Group V* (C) above 50% below 0.2%
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Table 2-3. Characteristics of silicone hydrogel contact lenses (adapted with permission from Stapleton et al., 2006)

Commercial name Acuvue Oasys Pure Vision Focus Night&Day 020ptix Acuvue Advance

(US adopted name) senofilcon A balafilcon A Lotrafilcon A Lotrafilcon B Galyfilcon A

Manufacturer Johnson &Johnson Bausch & Lomb CIBA Vision CIBA Vision Johnson &Johnson

Water content (%) 38 36 24 33 47

Principal Monomer mPDMS DMA, TRIS, DMA, TRIS, mPDMS, DMA, HEMA
+ DMA + HEMA + NVP + TPVC siloxane macromer siloxane macromer  siloxane macromer
siloxane macromer + + NVA + PBVC TEGDMA, PVP

TEGDMA + PVP

Surface modification Plasma oxidation None 25 nm plasma 25 nm plasma None
producing glassy Internal wetting coating with high  coating with high  Internal wetting agent
islands agent (PVP) refractive index refractive index (PVP)
FDA group Q)] (D) m m Q)]
Low water Low water Low water Low water Low water
Non-ionic lonic Non-ionic Non-ionic Non-ionic

NVP N-vinyl pyrrolidone; TPVC tris-(trimethylsiloxysilyl) propylvinyl carbamate; NCVE N-carboxyvinyl ester; PBVC poly[dimethylsiloxyl] di[silylbutanol]
bis[vinyl carbamate]; DMA N,N-dimethylacrylamide;

HEMA 2-hydroxyethylmethacrylate; MA methacrylic acid; PVP polyvinylpyrrolidone;

mPDMS monofunctional polydimethylsiloxane; TEGDMA tetraethyleneglycol dimethacrylate; EGDMA ethyleneglycol dimethacrylate.
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2.5 Ocular In vitro Models

The Draize eye irritation test using live rabbits and dogs was developed in the 1940’s and
has been the only valid toxicity test accepted by regulatory authorities since 1964. The Draize eye
test has been widely criticized due to ethical and cost issues. EX vivo test models using dissected
animal eyes and corneas, are being used as alternatives but suffer from similar criticism as they
still lead to animal sacrifices (Castro-Mufiozledo, 2008; Draize et al., 1944; Huhtala et al., 2008;
York and Steiling, 1997). Cell immortalization and cell culture techniques have enabled the
development of in vitro ocular models. Extensive research has led to promising test platforms for
assessing the drug permeability, ocular bioavailability and toxicity as well as studying the
biological interaction of drug releasing materials (Castro-Mufiozledo, 2008). The cornea is the
topmost outer surface of anterior eye with the maximum penetration resistance and rate-limiting
barrier for permeation to the anterior chamber, therefore corneal models consists mostly of
stratified corneal epithelial cells (Castro-Mufiozledo, 2008; Postnikoff et al., 2014; Robertson et
al., 2011). Other commercial and experimental multilayer corneal constructs containing stroma
and endothelium, have also been successfully developed (Castro-Mufiozledo, 2008; Huhtala et al.,
2008; Reichl 2004; Reichl et al., 2011).

2.5.1 Primary Cell Culture

Corneal cultures using isolated primary cells from humans and animals have been
extensively described in the literature (Castro-Mufiozledo 2008; Reichl et al. 2011). Techniques
for the culture of primary cells have been developed since 1940s and several protocols have been
established using rabbit cells because of their rapid proliferation rate and their potential to compare
to in vivo test results since most of the in vivo tests are performed in rabbits. However, the main
challenges in cultivating primary corneal epithelial cells in vitro are developing appropriate growth
conditions for long-term survival and stable expression of differentiated phenotypes and
establishing culture conditions close to their natural environment to enable the cells to proliferate
and differentiate into a stratified multilayer (Hornof et al., 2005; Castro-Mufiozledo, 2008; Reichl

et al., 2011). Using primary human corneal primary cells in vitro for assessment of drug
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permeability and toxicity is not routine due to the high variability in phenotype, the instability in
gene expression of different donor samples, as well as their short life span. Many attempts have
been made to resolve the shortcomings of using primary cells by modifying culture condition and
culture media to extend the life span, increase the number of sub-cultures and the stability of
differentiated phenotypes (Castro-Mufiozledo, 2008; Hornof et al., 2005). However, immortalized

human cell lines appear to be more suitable for routine and screening tests (Hornof et al., 2005).

2.5.2 Immortalized Cell Culture

Following the development of genetic engineering techniques, a variety of immortalized
corneal cell lines has been established from human, rabbit, hamster and rat corneas.
Immortalization of mammalian cells provides an alternative to address the high demand for use of
animal models in biomedical and pharmaceutical research. Following isolation of cells from the
tissues, these techniques establish cell lines which have the ability to grow and differentiate under
defined culture conditions for high number of passages without any major instability in phenotype
gene expression (Hornof et al. 2005; Castro-Mufiozledo 2008; Huhtala et al. 2008). Most of
immortalization of corneal epithelial cells is induced with oncogenes such as Simian Virus SV40,
SV40-LT antigen and human papilloma virus HPV16 and HPV18. However, immortalization with
viral oncogenes has some drawbacks such as the resistance to final differentiation and phenotype
instability. Researchers have thus explored another immortalization approach by increasing the
telomerase activity of cells. The mechanism of the shortening of the telomere during each cell
division works as a mitotic clock and is responsible for controlling the cell life-span. By
inactivation of pl6, p53 and hTERT gene expression (which are responsible for telomere
shortening), corneal epithelial cells are immortalized. Instead of genetic manipulation to
immortalize epithelial cells, extended serial subcultures can also lead to isolation of spontaneous
immortalized cell lines. However, these procedures are difficult and depend highly on the cell type,
animal species and the tissue from which cells are isolated. Using immortalized corneal cell lines
in in vitro models has major advantages like extended life span and fast growth with improved
conditions that provide a high-throughput tool for screening and assessment of drugs (Castro-
Mufiozledo 2008).
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2.5.3 Corneal Epithelial In vitro Models

On the ocular surface, the cornea is the main route of topical drug absorption with the
corneal epithelium being the outer most surface. Therefore, current research in the field of drug
delivery of ophthalmics is highly focused on corneal interactions with drugs and biomaterial at the
tissue, cellular and molecular levels (Jarvinen et al., 1995; Reichl et al., 2011; Sandeman et al.,
2003).

Numerous corneal models have been developed by using different cell culturing techniques. These
vary from culturing a simple monolayer of epithelium on a permeable membrane (Reichl et al.,
2011) to differentiated stratified corneal epithelium models (Postnikoff et al., 2014). Models gain
complexity from being a co-culture of epithelium-stroma or epithelium-3T3 fibroblast to the most
complex engineered 3D corneal equivalents containing epithelium, stroma and endothelium layers
(Castro-Mufiozledo, 2008; Germain et al., 2000; Reichl, 2004; Reichl et al., 2011). Figure 2-9
illustrates the variety of different corneal models based on their specificity versus their complexity.
These models, constructed with different cell culturing methods have various applications from
simple in vitro toxicity test and drug permeability to construction of whole corneal equivalent for
tissue implantation. Corneal epithelial monolayer models are mostly used for toxicity and eye
irritation tests (Huhtala et al., 2008; Reichl et al., 2011; Toropainen et al., 2001). By developing
more complex corneal models consisting of endothelial, stromal and epithelial layers constructed
(Figure 2-10) on cell culture inserts, researchers hope to find better correlations between in vivo
and in vitro results (Hornof et al. 2005; Huhtala et al. 2008). Various extracellular factors are
involved in development of a three dimensional corneal model. As the corneal epithelium is
exposed to the air interface in vivo, an air-liquid interface in the in vitro model is critical for
differentiation of the corneal epithelium. This interface leads to the development of apical flat cells

with desmosomes and tight junctions which carry out the barrier function.
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Figure 2-9 Corneal models constructed with cell culture techniques (taken with permission from Huhtala et al.
2008)
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Figure 2-10 Step by step construction corneal equivalent. A-D Structural layers of the cornea are seeded layer by
layer on the cell culture inserts and are differentiated to form a stratified epithelium with an air-cell interface
(taken with permission from Huhtala et al., 2008).
The in vitro corneal models used for the assessment of ocular barrier function are made of stratified
corneal epithelium multilayers or stratified epithelium multilayers co-cultured with stroma or 3T3
fibroblasts (Ban et al., 2003). Expression of differentiated keratocyte-specific biomarkers is a key

indicator of a successful development of a stratified 3D corneal epithelium model. Therefore
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modulation of cell proliferation and differentiation using modification of supplemented culture
media, co-culture techniques and grafting culture inserts with ECM proteins are established
methods by researchers for the development of corneal models mimicking the corneal barrier
function. Another element which should not be neglected is the expression of transporters at the
gene and molecular levels when these models are used for drug permeation and screening studies
(Castro-Muniozledo, 2008; Dey et al., 2003; Forbes and Ehrhardt, 2005; Hornof et al., 2005;
Mandery et al., 2010). Postnikoff et al. for the first time developed a curved stratified corneal
epithelium in vitro model to assess the ocular biocompatibility of contact lens-multipurpose
solution. This 3D corneal epithelium model was reconstructed successfully with the real human
eye curvature using immortalized human corneal epithelial cells that proliferated and stratified on
a collagen coated cellulosic membrane. This 3D model would fit well the curvature and the area
of contact lenses, and is a suitable platform for ocular biocompatibility assessment of contact
lenses, multipurpose solutions and any other topical ophthalmics (Postnikoff et al. 2014).

Only a few whole cornea models have been developed so far that can mimic the in vivo
environment. Minami et al. have isolated bovine endothelial, stromal and epithelial cells and
cultured them in a 3D collagen matrix. In this model, the cells express the cornea specific keratin
biomarkers and the epithelium consists of 5-6 layers of stratified differentiated cells. This was the
first reconstructed corneal equivalent from primary cells (Hornof et al. 2005). Griffith et al.,
successfully constructed a functional human cornea from immortalized cell lines consisting of
three cellular compartments of epithelium, stroma and endothelium as well as two acellular
Bowman’s and Descemet’s membranes. The equivalent cornea mimicked major physiological and
morphological functions as well as the transparency of the real human cornea. This in vitro human
corneal construct showed similar level of expression of genes and key biochemical markers of
human cornea (Li et al., 2005, Griffith, 1999).
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Chapter 3

Characterization of the Human Corneal In vitro Model

3.1 Introduction

The main objective of this study was to characterize an in vitro corneal epithelial cell model
previously used in Dr. Gorbet’s lab and further investigate the transport of Latanoprost (a
glaucoma drug) released from a contact lens. As previous results by Mohammadi et al., (2014)
showed that live cells in the in vitro models had a significant effect on the extended release of
Latanoprost from a contact lens (Mohammadi et al., 2014), it is hypothesized that active
transcellular transport mediated by certain drug transporters in the corneal epithelium is involved
in transport of Latanoprost. It is also hypothesized that, for Latanoprost, the transcellular active
transport is more important than the passive diffusion in paracellular transport. To test these
hypotheses, the presence of organic anion transporting polypeptide 2A1 (OATP2A1), which is
responsible for the transport of prostaglandins in the human cornea, was investigated at the gene
expression level. To further study the potential role of the OATP2A1 transporters in transcorneal
diffusion of Latanoprost, the effect of Diclofenac, a cyclooxygenase inhibitor, on the function of
OATP2AL1 transporters was studied.
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3.2 Materials and Methods

3.2.1 Preparation of Drug Solution

Latanoprost was bought from Cayman Chemical (Ann Arbor, MI, USA) as 5mg aliquot in
a solution of methyl acetate. To obtain a solution of 50ug/ml, the 5mg of Latanoprost aliquot was
dissolved in 100ml of phosphate buffered saline (PBS) (Lonza, Walkersville, MD) The
concentration of the stock drug solution was then measured by enzyme immuno assay (EIA) (see
below) and determined to be 161.2+36.5ug/ml. The solution was further diluted and concentration

confirmed at 19.3+3.4pg/ml. All Latanoprost solutions were stored at — 20 °C.

3.2.2 Preparation of Contact Lenses

Two commercially available silicone hydrogel contact lenses, balafilcon A and senofilcon A
were used in this study. The chemical properties of these lenses are presented in the Table 3-1.
Lenses were first incubated for 24 hours in PBS to remove any remnants of their packaging
solution. The lenses were then incubated in 1.5ml of the drug solution (total amount of Latanoprost

available to contact lens was 29 ng) for 24 hours.
Table 3-1 Properties of the Contact Lens Hydrogel Materials (Mohammadi et al., 2014)

Commercial name Acuvue Oasys Pure Vision
(US adopted name) senofilcon A balafilcon A
Water content 38 36
Principal Monomer mPDMS
+ DMA + HEMA + NVP + TPVC
siloxane macromer + + NVA + PBVC
TEGDMA + PVP
Surface modification Plasma oxidation None
producing glassy islands Internal wetting agent — (PVP)
FDA group M (nn
Low water Low water
Non-ionic lonic
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3.2.3 Cell Culture

The HPV16-E6/E7 immortalized human corneal epithelial cells (HCEC) generously gifted
by Dr. Griffith, University of Ottawa Eye Institute, Ottawa, ON, Canada (Griffith et al., 1999)
were cultured in a 25cm? treated tissue culture flask containing 10ml of keratinocyte serum free
medium (KSFM) supplemented with Kkeratinocyte growth supplement (KGS), and
penicillin/streptomycin (Pen/Strep) (ScienCell, Carlsbad, California, USA) at 37°C and 5% carbon
dioxide (CO.). Every other day, the medium was renewed and cells were monitored for any
morphological changes. After cells reached 90% confluency, adherent cells were removed
following a 15-minute incubation in 3ml TryplExpress (Life Technologies Burlington, Ontario,
Canada) dissociation solution at 37°C and 5% CO.. Dissociated cells were centrifuged at 1200 rpm
for 7 minutes and were washed with 10ml medium supplemented with 10% fetal bovine serum

(FBS) (Life Technologies Burlington, Ontario, Canada), then were ready to use.

3.2.4 Flat Monolayer HCEC Model.

To develop a transcorneal flat monolayer in vitro model, polyethylene terephthalate (PET)
membrane inserts (Millicell PET membrane with a 1.0m pore size, also referred to as culture
inserts, Millipore, MA, USA) were set in a 12 well plate. The PET inserts were incubated with 90
pl of 0.05 mg/ml Collagen type | from rat tail (ScienCell Carlsbad, California, USA) for 30
minutes. Following collagen coating, the inserts were washed with 500 ul of PBS (Lonza,
Walkersville, MD) and were then seeded with 10° cells per well. The corneal epithelium models
were fed with KSFM on each of the basal and apical sides of the cell layers for 6 days in order for

the monolayer to form tight junctions. The medium was exchanged every other day.

3.2.5 Fixing cells

To investigate the role of metabolically active cells versus a physical barrier of cell
monolayer to drug permeation, a set of experiments was designed to compare Latanoprost release
from a contact lens through a fixed and a live monolayer corneal model. In the fixed monolayer,
cells are dead and thus neither metabolic activity nor active transport occurs. The only transport
would be a passive paracellular diffusion. Cells were fixed for 24 hours with a 2%

paraformaldehyde solution in PBS.
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3.2.6 Transport Inhibition

The nonsteroidal anti-inflammatory drugs (NSAIDs) are inhibitors of both isoforms of
cyclooxygenase, COX-1 and COX-2, which are the rate limiting enzymes for the synthesis of
prostaglandins (Cryer and Feldman, 1998). Diclofenac, a NSAID, can inhibit completely the
OATP 2A1 transporter responsible for the transport of prostaglandins in cells (Mandery et al.,
2010). Diclofenac sodium salt (Sigma-Aldrich Catalogue No. 93484) was dissolved in KSFM at
the concentration of 100 uM (Mandery et al., 2010). To inhibit the potential prostaglandin
transporters in the corneal epithelial cells, at day 5, some of the corneal epithelial monolayers were
incubated in 1.5 ml of the Diclofenac solution for 24 hours before the release experiments.

3.2.7 MTT viability Assay
The MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) assay measures

mitochondrial activity and is based on the conversion of MTT into formazan crystals by living
cells. For most cells, the total mitochondrial activity is related to the number of viable cells, thus
this assay is broadly used to assess viability and cytotoxic effects of drugs on cell lines (Cree,
2011; Mosmann, 1983). To perform the MTT assay, the tetrazolium salt was dissolved in pre-
warmed KSFM at 0.5 mg/ml and then sterilized through a 0.2um pore sized filter. 0.5ml and 1ml
of MTT solution was applied to the basal and apical surfaces of the monolayer respectively. After
three hours of incubation at 37°C and 5% CO, the inserts were covered with the dark purple
formazan crystals (Figure 3-1). The formazan crystals were dissolved in 1.5ml of isopropanol on
the apical and basal side of the cell culture inserts. The inserts with isopropanol were left on a
shaker for 2 hours in order to ensure complete dissolution of the formazan. The apical and basal
formazan solutions were mixed and an aliquot of formazan solution was read on a UV-Vis plate

reader at wavelengths of 595nm and 620nm.
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Figure 3-1. Human corneal epithelial cells were grown on PET membrane insert and were stained with MTT on
the 6™ day of growth (left). Formazan (purple) crystals inside cells (right) indicate viable cells.

3.2.8 In Vitro Drug Release Experiment

Three in vitro models were used to assess the effect of active transport on the release kinetics of
Latanoprost from commercially available contact lenses. The in vitro models used diffusion
through a monolayer of human corneal epithelial cells (HCECSs), through a transport inhibited
HCECs monolayer and a fixed monolayer of HCECs. Aliquots of 50l were taken from the bottom
of the in vitro models and replaced by fresh culture medium. Samples were taken at 1, 4, 8, 12, 24,
48, 72 and 96 hours. Collected samples were analyzed by an enzyme immuno-assay (EIA) for
Latanoprost (Cayman Chemical, Ann Arbor, MI, USA). Following the EIA Kit instructions, each
collected sample was analyzed in duplicate and at two different dilutions. Each set of experiments
was repeated 3 times independently on different days. Drug concentrations were calculated based
on the previously published study from Gorbet’s research laboratory (Mohammadi et al., 2014).
Briefly, samples were taken from the bottom of the wells and replaced by fresh medium at each
time point. In order to consider the dilution rate and to calculate the absolute amount of drug
released at each point, mass balance principles were applied. To estimate the actual concentration

at each time point, the equation below was used:

i-1
Ca,i:Ci+k Z C]
=1
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Cqiis the actual concentration at the time point ¢;. C; is the measured concentration at the time
point ¢t;, k is the fraction of the total medium volume at the bottom of the wells which was
aliquoted. 3;11 C; is the summation of concentrations measured before time point t;. The effect

of dilution on the diffusion rate of the drug was assumed to be insignificant due to the small

difference in the total volume of medium after sampling (Mohammadi et al., 2014).

3.2.9 RNA Isolation and Real Time PCR

Total RNA from corneal epithelial cells grown to confluence in a 25 cm? flask was
extracted with an RNA isolation kit (lllustra RNAspin Mini; GE Healthcare, Little Chalfont,
Buckinghamshire, UK) based on the company’s protocol. RNA samples were stored at -80 °C until

analysis.

The reverse transcription of extracted RNA (2 pl each) was performed using Superscript HI kit
(Invitrogen, Carlsbad, CA) based on the company’s protocol. The cDNA was amplified in a
sequence detection system (ABI 7900HT; Applied Biosystems) at 45 cycles of 50°C for 2 minutes,
followed by denaturation at 95°C for 15 seconds, and then annealing at 60°C for 1 minute.
Predesigned primers and TagMan probes for SLCO2A1 (OATP2A1) and the housekeeping genes
B-actin (ACTB) and glyceraldenyde 3-phosphate dehydrogenase (GAPDH) were used
(Hs00194554 m1, Hs00200670_m1, Hs00357333_gl1, Hs00266705 gl; Applied Biosystems)
(Kraft et al., 2010; Mandery et al., 2010).

3.2.10 Gel Electrophoresis

Agarose gels (1.5%) were obtained by dissolving 0.75 g agarose in 50 ml of Tris Acetate
EDTA (TAE) buffer heated to its boiling point. After complete dissolution of agarose, the solution
was cooled down for 5 minutes and 0.2 pl GelRed dye (Biotium, Inc. Hayward, CA USA) was
added. The solution was cast into the mold plate and the gel film was formed within 30 minutes.
Amplified PCR cDNA samples were mixed with DNA dye (bromophenol blue) at a ratio of 1:5.
The agarose gel was placed into a Bio-Rad mini sub-cell and filled with Tris Acetate EDTA buffer

to cover the entire gel surface. 18 pl of cDNA samples with dye were loaded in each well and
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electrophoresis was run at 85V and 300 mA until the samples had migrated to within % of the

positive electrode end of the gel. The gel was removed and photographed under UV lamp.

3.2.11 Data Analysis

All results were expressed as the mean + standard deviation of three independent
experiments. Statistical analysis was performed by two-way analysis of variance (ANOVA) using

Minitab Express™ Software. A p value of less than 0.05 was required for statistical significance.

32



3.3 Results

3.3.1 The effect of active transport on release of Latanoprost

The release profiles of Latanoprost from balafilcon A through live, transporter-inhibited
and fixed monolayer in vitro models are presented in Figure 3-2. The maximum amount of
Latanoprost released from balafilcon A after 96 hours was 1.8+0.2ug in the live HCEC monolayer
model. The least amount of Latanoprost (0.3+£0.0ug) was released in the monolayer model where
cells had been fixed. As can be seen on Figure 3-2, the release profiles of Latanoprost in all three
models were linear with approximately constant rates (R?>0.99). Table 3-2 reports the Latanoprost
release rate from balafilcon A. The average release rates for balafilcon A in live, inhibited and
fixed models were 19.1+1.8, 13.3+3.1 and 2.9+0.3 ng/hour respectively. Inhibiting transporters in
the HCEC monolayer led to approximately 36£1% reduction in the total amount of Latanoprost
released from balafilcon A after 24 hours (1.2+0.3 pg), a 30% reduction in the rate of release
(Table 3-2). The release rate and the amount of released drugs were significantly affected by
inhibition of transporters in immortalized HCECs compared to live HCEC monolayer model (p
<0.0001). Figure 3-4 presents the rate of inhibition calculated based on the amount of released
drug through live, transport inhibited and fixed cell models over 96 hours of experiment. As seen
in the figure, after 24 hours, the percentage of inhibition remained constant up to 48 hours and
started to unexpectedly be less effective after that. Fixing the cells also led to 83+1.5% decrease

in the amount of released Latanoprost (~85% decrease in the release rate from balafilcon A).
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Figure 3-2. Latanoprost release from balafilcon A contact lenses through live, transporter-inhibited and fixed
HCEC monolayer models. Cells were fixed in 2% paraformaldehyde. Lenses were soaked for 24 hours in drug
solution (29 ug Latanoprost) and then overlaid on the monolayer for 96 hours, n = 3, Mean £SD.

* Significantly different compared to transport inhibited model (p< 0.0352)

Table 3-2. Average Latanoprost release rate from balafilcon A and senofilcon A silicone hydrogel in 96 hours
Average Release Rate (ng/hour)8

Contact lens In vitro Model

Live Transport Inhibited Fixed
balafilcon A 19.1+1.8* 13.3+3.1 2.9+0.3*
senofilcon A8 34.616.7* 16.6+2.7 2.4+0.6*

* Significantly different compared to transport inhibited model (p<0.0001)
8§ Significantly different compared to balafilcon A (p=0.0095)

Figure 3-3 presents the release profiles of Latanoprost from senofilcon A through the live, transport
inhibited and the fixed corneal in vitro models. The total amount of Latanoprost released from
senofilcon A in the live monolayer model was 3.2+0.6 g after 96 hours; this significant increase
in release is almost twice the amount released from balafilcon A in the same in vitro model

(p=0.0322). The total amounts of drug released from senofilcon A after 96 hours were 1.6+0.3 ug
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and 0.2+0.1 pg in the transport inhibited and the fixed cell models respectively. Similar to
balafilcon A, the release profiles of Latanoprost in all three models were linear throughout the 96
hours of the experiments with a constant release rate (R?>0.99) (Table 3-2). The average rate of
release for senofilcon A through live, inhibited and fixed cell models were 34.6+6.7, 16.6+2.7 and
2.4+0.6 ng/hour respectively. Inhibiting transporters in the HCEC monolayer by 100uM of
Diclofenac sodium after 12 hours decreased the total amount of Latanoprost released from
senofilcon A by approximately 58+3% and remained constant up to the end of the experiments
(see Figure 3-4). This translated to a 52% reduction in the average rate of release as shown in
Table 3-2. Fixing the cells caused a 91+3.4% reduction in total amount of released drug from

senofilcon A (a reduction of 93% in release rate).

Concentrartion (Ug)
N
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Time (h)

—@&— senofilcon A + Monolayer —@— senofilcon A + Inhibited Cells senofilcon A+ Fixed Cells

Figure 3-3. Latanoprost release from senofilcon A contact lenses through live, transporter inhibited and fixed
HCEC monolayer models. Cells were fixed in 2% paraformaldehyde. Lenses were soaked for 24 hours in drug
solution (29 ug Latanoprost) and then overlaid on the monolayer for 96 hours. Release experiments were
conducted in three separate dates n = 3, Mean + SD.

* Significantly different compared to transport inhibited model at all time points after 12 hours (p<0.0005)

Overall, inhibition of transporters in immortalized HCECs significantly affected the release rate

and the amount of released drugs compared to live HCEC monolayer model (p<0.0001). It is also
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important to highlight that in all 3 models, Latanoprost release from balafilcon A was significantly
lower than senofilcon A (p= 0.0322). Analysis of variances (ANOVA) indicated that contact lens
materials and in vitro models had significant effects on the release kinetics of Latanoprost
(p<0.0001); however the interaction effect of contact lens type and in vitro model was not

significant (p =0.062).
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Figure 3-4. Transport inhibition of organic anion transporter protein OATP 2A1 by 100 uM Diclofenac
throughout 96 hours of Latanoprost release from balafilcon A and senofilcon A silicone hydrogel contact lenses.
Inhibition percentage is calculated based on the difference between the average released amount of drug from
lenses through live and inhibited monolayer in vitro models, n = 3, Mean +SD

3.3.2 Real Time PCR

The real-time polymerase chain reaction amplification graphs for the organic anion
transporter protein genes SLCO 2A1 responsible for the expression of the OATP 2A1 protein
(prostaglandin transporter) are presented in Figure 3-5. Comparison of the SLCO 2A1 to the
housekeeping genes indicated that SLCO 2A1 cDNA was amplified, confirming the presence of
this gene in the immortalized human corneal epithelial cell line. The gel electrophoresis results
from the amplified cDNA samples (Figure 3-6) further highlight the presence of the OATP 2A1l

gene in the human corneal epithelial cell line.
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Figure 3-5 Real-Time PCR Amplification graphs. SLCO2AL1 (light green), Beta Actin (Blue), GAPDH (Orange).
2ul of cDNA sample were run at 2 dilutions (1X and 10X). 2ul of RNA samples were used as negative control

Figure 3-6. Gel Electrophoresis of amplified cDNA samples. Sample 2 is 10X dilution of sample 1. 2ul of RNA
samples were used as negative control
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3.4 Discussion

In our three cell models, the release profiles of Latanoprost from both contact lenses were linear,
indicative of a controlled release with constant rate. These results are in agreement with results
presented previously by Mohammadi et al. (2014). In this study, the amount of drug released in 48
hours from silicone hydrogels loaded with ~185ug Latanoprost increased from 0.3-0.5 pg in a no-

cell model to 2.5-4.5 ug in a model using a monolayer or a multilayer of corneal epithelial cells.

Lower amounts of Latanoprost were released from contact lenses when cells were fixed or
inhibited. These results thus confirm that the presence of live cells in the in vitro model
significantly affects the rate of release and amount of eluted Latanoprost from balafilcon A and
senofilcon A. Considering the hydrophobic nature of Latanoprost and its high affinity for the lens
polymer, it can be postulated that an active transport mechanism mediated by cell transporters is
involved in the transport of Latanoprost in the corneal in vitro model. OATP2A1 is a well-known
transporter responsible for transport of prostaglandins (Kraft et al., 2010; Mandery et al., 2010)
and its presence in the HPV16 E6/E7 immortalized human corneal epithelial cells was confirmed
by RT-PCR. Furthermore, the significant decrease in the rate and amount of released Latanoprost
following inhibition of this transporter with 100uM of Diclofenac sodium confirmed the role of
active transcellular transport in the experimental model. Based on previous work by (Mandery et
al., 2010), Diclofenac sodium at 100uM is expected to completely inhibit OATP2A1 transporters
in HCEC. However, only a 40 to 50% reduction in transport was achieved suggesting that other
transporters may be responsible for active transport of Latanoprost through the cornea. The fact
that over 90% of Latanoprost transport was inhibited by paraformaldehyde fixation indicates that

cellular active transport governs transcorneal permeation of the hydrophobic Latanoprost.

The zero order release rates observed in this study also suggest that loading of Latanoprost prodrug
in balafilcon A and senofilcon A can potentially provide a simple platform for a sustained
controlled release system which may be able to deliver Latanoprost to the eye at a constant rate
within the therapeutic range and during an extended period of time. Further investigation is needed
to determine effective dosing for extended drug delivery purposes, which will be discussed in the

next chapter.
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Chapter 4
Application of the Human Corneal In vitro Model to assess

Latanoprost Controlled Released System

4.1 Introduction

This part of the project was defined with the perspective of designing a controlled release
device using commercially available extended-wear contact lenses loaded with lower amount of
Latanoprost (low dose therapeutic extended-wear contact lens). Mohammadi et al. 2014 previously
showed a linear release of Latanoprost from three silicone hydrogel contact lenses (balafilcon A,
senofilcon A and galyfilcon A) in the presence of live cells. While 95% of the Latanoprost in
solution (131 pg/ml) was uptaken in lenses, less than 4% of the uptaken drug was released. This
is due to the high affinity of the hydrophobic drug to the contact lens. Despite overall low release
from the lenses, this amount was still much higher than the required therapeutic level (150-300ng)
of Latanoprost. In this study, it was hypothesized that by loading lower concentration of
Latanoprost on contact lenses, the therapeutic amount of the drug could still be released and in
turn increase the efficacy and economy of the controlled release system. To test this hypothesis,
the uptake and release kinetics of silicone hydrogel contact lenses loaded with lower amount of
Latanoprost over an extended period of time was assessed.
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4.2 Materials and Methods

4.2.1 Preparation of Drug Solution

The drug solutions with concentrations of 19.3, 4.8 and 2.9 pg/ml were obtained by dilution

of Latanoprost stock solution (as explained previously in section 3.2.1).

4.2.2 Preparation of Contact Lenses

Two commercially available silicone hydrogel contact lenses, balafilcon A and senofilcon
A were used in this study. The chemical properties of these lenses were presented in the Table 3-
1. Lenses were first incubated for 24 hours in PBS to remove any remnants of their packaging
solution. The lenses were then incubated in 1.5ml of the drug solution (total amounts of

Latanoprost available to contact lenses were 29.0, 7.2 and 4.3 pg) for 24 hours.

4.2.3 Latanoprost Uptake and Release

After incubation with the drug solutions, the lenses were set on the in vitro corneal model.
The volume of liquid in the insert was 0.5ml and 1.0ml in the bottom well. The release was studied
for up to 96 hours. Aliquots of 50ul were taken from the bottom of the in vitro models and replaced
by fresh culture medium. Samples were taken at 4, 12, 24, 48, 72 and 96 hours. Collected samples
were analyzed by an EIA kit for Latanoprost (Cayman Chemical, Ann Arbor, MI, USA).
Following the EIA kit instructions, each collected sample was analyzed in duplicate and at two
different dilutions. To determine the uptake amount by the contact lenses, samples were also
collected from the soaking drug solution as well as the remaining drug solutions after soaking the
lenses. Each set of experiment were repeated for three times independently. Drug concentrations

were calculated based on the equation explained previously in Chapter 3.

4.2.4 Data Analysis

Results presented here are the meanzstandard deviation of three independent experiments.
Statistical analysis of the data was performed by two-way analysis of variance (ANOVA) using

Minitab Express™ Software. A p level of less than 0.05 was required for statistical significance.
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4.3 Results

4.3.1 Latanoprost Uptake and Release

The Latanoprost uptake and release data for both balafilcon A and senofilcon A contact
lenses are presented in Table 4.1. The theoretical expected concentration of the drug solution and
actual initial concentrations of drug loading solution measured by EIA are also presented in this
table. As shown in the table, more than 95% of Latanoprost available to the lenses was uptaken in
24 hours regardless of initial concentration. The maximum drug loaded was 28.9 pg (99.5+0.1%
uptake) for balafilcon A with initial loading amount of 29.0+5.1 pg Latanoprost. The minimum
drug loaded was 4.2 pg with initial loading amount of 4.3+0.3ug Latanoprost. As expected, there
was a significant effect of initial loading concentrations on the uptake amount of Latanoprost to

contact lenses (p=0.0001) but there was no effect of contact lens materials (p=0.6316).

The maximum amount of drug released after 96 hours was 4.1+0.3 pg which represented
57.2+3.5% of the uptaken drug by senofilcon A with the initial loading amount of 7.2+0.6 pg. The
minimum amount released after 96 hours was 0.5£0.1 pg from balafilcon A loaded with 4.3+0.3
pg. After 96 hours, senofilcon A released significantly more Latanoprost than balafilcon A
regardless of initial amount of loading (p=0.0007). The amounts of drug released from both
silicone hydrogel contact lenses with initial loading conditions of 29.0 and 7.2 pg were
significantly higher than the amount released from these lenses loaded with 4.3 pg (p=0.007);
regardless of contact lens type. There was no significant difference in the release amount between
initial loading conditions of 29.0 and 7.2 pg (p=0.7920).
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Table 4-1 Latanoprost uptake into balafilcon A and senofilcon A contact lenses and total amount of drug released after 96 hours through the live HCEC monolayer in vitro
model. Lenses were soaked for 24 hours in different concentrations of Latanoprost solutions and then drug uptake into the lens were measured. Uptake experiments were

conducted in three separate dates (n = 3, Mean * SD) except for drug solutions containing 7.2 pg Latanoprost (n=2, Mean + SD)

Theoretical concentration®
10 6 3
(Mg Latanoprost/ml)
Actual loading concentration?
19.3+3.4 48+04 29+0.2
(ug Latanoprost/ml)
Loading dose (ug) 29.0+5.1 7.2 0.6 43+0.3
Uptake Release® Uptake Release® Uptake Release®
(%) (H9) (%) (H9) (%) (H9) (%) (H9) (%) (H9) (%) (H9)
balafilcon A 99.5+0.1| 28.9+0.0 | 6.1+0.6 | 1.8+0.2 | 95.7+0.9 | 6.9+0.1 | 14.246.5 | 1.0+0.5 | 97.8+0.9 | 4.2+0.0 | 12.2+3.1 |0.5+0.1*
senofilcon A 98.6+0.6| 28.6+0.2 |11.3+2.28|3.2+0.68 | 96.0+1.0 | 6.9+0.1 |57.3+3.58 | 4.1+0.3§ | 97.4+0.2 | 4.2+0.0 | 32.2+11.98 [1.4+0.58*

! Expected (nominal) concentration based on the manufacturer’s label

2 Concentration of the solution measured by EIA
3 The release percentage was calculated based on the ratio of the released amount over the uploaded amount of drug per contact lens.
8 Significantly different compared to balafilcon A (p < 0.0001)

* Significantly different compared to 7.2 and 29.0 pg loading amount (p < 0.003)
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4.3.2 Latanoprost Release Kinetics

Figure 4-1 and 4-2 illustrate the 96-hour release profiles of Latanoprost from balafilcon
A and senofilcon A contact lenses loaded with different amount of drugs (Table 4-1). The
release data for initial loading amount of 7.2 g at the time point of 72 hours are not included
due to sampling errors for both balafilcon A and senofilcon A contact lenses. The trend of
release is presented by dash lines connecting data of between 48 and 96 hours’ time points for

this condition.

As shown in Figure 4-1, the lenses which were loaded with 7.2 and 29.0 ug of Latanoprost
showed linear release kinetics (R?>0.98). No significant difference in the amount of drug
released was observed (p=0.5480) at all time-points. On the other hand, the release rate for the
contact lens loaded with the lowest amount of Latanoprost (4.3pg) decreased after 24 hours
and reached an equilibrium showing a first-order decay rate (R? = 0.9492). At 24 hours, all
the amount of Latanoprost released for all three initial loading concentrations were above
clinical therapeutic dose. The average release rates of balafilcon A with different initial loading
concentrations are presented in Table 4-2. The maximum average rate of release for balafilcon
A was 36.5 ng/hour with the initial loading of ~7.2 pug Latanoprost whereas the minimum

average release rate for balafilcon A was 7.3ng/hour with the initial loading amount of ~4.3

ug.
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Figure 4-1. Latanoprost release from balafilcon A contact lenses through live HCEC monolayer models.
Lenses were soaked for 24 hours in drug solutions containing 4.3, 7.2 and 29.0 ug Latanoprost and then
overlaid on the monolayer for 96 hours. Release experiments were conducted on three separate dates h = 3,
Mean + SD except for drug solutions containing 7.2 ug Latanoprost n=2, Mean + SD

* Significantly different after 24 hr compared to 7.2 and 29.0 pg loading amount (p<0.0214)

The release profile of Latanoprost from senofilcon A contact lenses loaded with different
amount of drugs in a time course of 96 hours are presented in Figure 4-2. The Latanoprost
release profiles for senofilcon A have a similar trend compared to the release behavior of
balafilcon A, regardless of the rate and the amount of drug released. The release kinetics of
senofilcon A with initial loading amount of 29.0 and 7.3 pg were zero-order (R%>0.98) with
average rates of 44.2 and 36.4 ng/hour respectively (Table 4-2). However, the Kinetics of
Latanoprost release from senofilcon A with 4.3 pg loading amount was a first-order decay
(R?=0.68) depleting the drug after 24 hours of release with the average rate of 14.6 ng/ml.

Statistical analysis indicated that there was a significant effect of lens type on release kinetics
(p<0.0001) and initial loading concentration significantly affected the rate of release from

silicone hydrogel contact lenses. (p=0.0221)
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Figure 4-2. Latanoprost release from senofilcon A contact lenses through live HCEC monolayer models. Lenses
were soaked for 24 hours in drug solutions containing 4.3, 7.2 and 29.0 ug Latanoprost and then overlaid on the
monolayer for 48 hours. Release experiments were conducted on three separate dates n = 3, Mean + SD except
for drug solutions containing 7.2 pg Latanoprost n=2, Mean + SD

* Significantly different after 24 hours compared to 7.2 and 29.0 pg loading amount (p<0.0406)

Table 4-2. Latanoprost average release rate from silicone hydrogel contact lenses in 96 hours

Contact Lens Initial loading amount (ug) average release rate (ng/hour)
balafilcon A 4.3 7.311.4*
senofilcon A 14.6+5.38*
balafilcon A 7.2 36.5£19.6
senofilcon A 44.2+2.68
balafilcon A 29.0 19.1+1.8
senofilcon A 34.616.78

8 Significantly different compared to balafilcon A (p<0.0417)
* Significantly different compared to 7.2 and 29.0 pg loading amount (p<0.0221)
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4.4 Discussion

This study was undertaken with the ultimate goal of designing a controlled release
device using marketed contact lenses for extended release of Latanoprost for treatment of
glaucoma. The short retention time on ocular surface and poor patient compliance due to the
frequent dose requirement of topical eye drops are two of the main challenges in topical
ophthalmic administration (Urtti, 2006). Using silicone hydrogel contact lenses has always
been considered as an alternative solution to overcome these challenges (Kim et al., 2010,
2008; Mohammadi et al., 2014; Peng and Chauhan, 2011; Peng et al., 2012).

In this study, the impact of loading lower amount of drug on the rate and the amount of drug
released in an extended delivery time (4 days) was assessed. The results showed that the
therapeutic dose has been reached in 24 hours with all three initial loading amounts. However,
the release rates for the low loading amount (4.2 ug) were not constant throughout the entire
release period for both balafilcon A and senofilcon A reaching a plateau after 24 hours of
release. Comparison between the uptake and the release amounts for this particular condition
indicates that lenses have not been depleted, with only up to 32% being released. This
saturation might be due to the equilibrium between the cellular active transport of Latanoprost
and chemical interaction forces between hydrophobic Latanoprost molecules and the contact
lens polymer matrix. This could be a disadvantage for an extended drug delivery device. On
the other hand, the release rates for both contact lenses loaded with 29 and 7.2 ug of
Latanoprost were approximately constant throughout the entire experiment giving a zero order
release. The maximum released amount of Latanoprost from both contact lenses in these
conditions were in the range of ~3.2- 4.1 pug which are comparable to the released amount
achieved by Mohammadi et al., 2014 although these amounts of Latanoprost are eluted in 96
hours rather than 24 hours.

Surprisingly, the release results showed a higher amount of drug eluted from senofilcon A
loaded with 7.2 pg compared to senofilcon A loaded with 29.0 pg Latanoprost. While this
indicates that soaking the senofilcon A lens in 7.2 pg of Latanoprost provides a drug delivery
system just as effective as soaking the lens into 29 ug, the statistical difference observed may

highlight some of the experimental variations that are observed with measuring concentration

46



of Latanoprost. The high dilutions that are necessary to measure Latanoprost using the EIA
are associated with high standard variations and may be at the origin of the currently observed
statistical difference. Similar large standard deviations were noted by Mohammadi et al.,
(2014). Further experiments will be required to confirm the difference observed in these
experiments.

The fact that, regardless of initial loading concentrations, senofilcon A released significantly
higher amount of Latanoprost compared to balafilcon A is in agreement with previous results
by Mohammadi et al. (2014). Our results with lower uploaded amounts indicates a release of
more than 55% of uptaken drug into contact lenses, a significant improvement over the 4%
obtained previously in our lab, suggesting that a simple, economical and cost effective drug
delivery system can be obtained with silicone hydrogels and Latanoprost.

In this study, we were able to obtain sustained release of Latanoprost in vitro for up to 4 days.
There is currently limited data available on the effect of extended release of glaucoma drug on
maintaining IOP at a healthy level as only the effects of drops have been studied in human.
Previous work by Peng et al. (2012) demonstrated that using 4-day extended release of Timolol
from drug/vitamin E loaded contact lenses on beagle dogs in vivo resulted in an IOP as low as
the one associated with daily use of eye drops. The 0P was also significantly below the 10P
baseline value for glaucoma eyes in the beagle dogs (Peng et al., 2012). In our experiments,
the average rate of release for balafilcon A ranged from19.1 to 36.5 ng/hour for initial loading
of 29.0 and 7.2 g respectively while rates for senofilcon A were 34.6-44.2 ng/hour. Over a 4-
day period of contact lens wear, these rates of Latanoprost release can potentially satisfy the
therapeutic daily dose of 150-300 ng/day and effectively lower 10P. Further investigations are
necessary to confirm these release kinetics and their effectiveness in ex vivo and in vivo
conditions or in a more complex in vitro model mimicking the dynamic environment of ocular

surface.
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Chapter 5
Release System for Hydrophilic drug

5.1 Introduction

Timolol is a non-selective B-blocker which has been used widely for treatment of glaucoma
and 10P hypertension for over 30 years (Neufeld et al., 1983). Timolol is a replacement for
prostaglandin analogues or is prescribed in combination with other prostaglandin analogues
like Latanoprost (\VVolotinen et al., 2011). Timolol reduces the IOP by controlling the formation
of aqueous humor and is used conventionally in the form of eye drops (Neufeld et al., 1983).
The Timolol molecule by itself is categorized as a lipophilic drug but it is commercially
available in the hydrophilic form of 0.5% Timolol maleate gel forming solution in order to

increase its duration of action on the ocular surface (Shedden et al., 2001).

Ciprofloxacin HCI is a new generation of antibacterial agents which is very active against a
broad range of Gram-positive and Gram-negative bacteria and has been widely prescribed in
the form of eye drops as an antibiotic agent for ocular infections. Ciprofloxacin HCI is also a

hydrophilic molecule (Campoli-Richards et al., 1988).

Like any other topical ophthalmics, the main challenges for Ciprofloxacin HCI and Timolol
maleate ocular delivery are their bioavailability and short residence time on ocular surface.
Moreover due their hydrophilic nature, they would mainly permeate through the paracellular
route because they cannot distribute into the cellular lipid bilayer membrane (Sakanaka et al.,
2006). Therefore extensive attempts have been made to implement a therapeutic contact lens
system for extended release of these hydrophilic drugs using different techniques and
strategies. However the biggest obstacle in this effort, the burst release of the drug, seems to
remain unconquerable. The majority of these studies examined the release kinetics of drug
loaded contact lenses in a fixed-volume in vitro model containing PBS or water, which is far
from the ocular environment conditions (Holden et al., 2012; Hui et al., 2014, 2012; Kim et
al., 2008; Nguyen et al., 2012; Peng et al., 2012).
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The main objectives of this part of the project were to evaluate the release kinetics of
hydrophilic drug eluting from silicone hydrogel contact lenses in vitro in the presence of
corneal epithelial cells and compare them to their release kinetics in a fixed-volume in vitro
model with no cells. The validity of the corneal in vitro model as the test platform for screening
of the drug eluting biomaterials, against the hydrophilic drugs was also assessed. Previous
work by Mohammadi et al., (2014) had only investigated the hydrophilic derivative of
Latanoprost, Latanoprost free-acid. Alternative low cost and fast analytical technique
(spectrophotometry) allowing the real-time measurements of the drug concentration were other
factors leading us to switch to hydrophilic drugs other than Latanoprost free-acid, which

requires an expensive and laborious EIA analytical method.

To address these objectives, we assessed and statistically compared the uptake and the release
kinetics of balafilcon A and senofilcon A silicone hydrogel contact lenses uploaded with
Ciprofloxacin HCI and Timolol maleate in three in vitro models: no cell, live cell and fixed

cell.
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5.2 Materials and Methods

5.2.1 Preparation of Drug Solution

The drug solutions were prepared by dissolving of Ciprofloxacin HCI (Sigma-Aldrich)
and Timolol Maleate (Sigma-Aldrich) in cell culture water (Lonza, Walkersville, MD). The
expected concentration of Ciprofloxacin HCI stock drug solution was 3000 pg/ml and the
expected concentration of Timolol Maleate was 1000 pg/ml based on the drug amount claimed
on the labels by the manufacturers. The actual concentrations were measured by
spectrophotometry and are presented in Table 5.1 and Table 5.2. Stock solutions were stored
at -20 °C.

5.2.2 Calibration curve

In order to calculate the drug concentrations based on the light absorbance using a UV-
Visible spectrophometry technique, a standard curve by serial dilutions of drugs at
concentrations of 1, 2, 3, 5, 7, 10, 12, 15 and 20 ug/ml was developed. Absorbance of
Ciprofloxacin HCI and Timolol Maleate were measured at the wavelengths of 274 and 295 nm
respectively. The calibration curves for Ciprofloxacin HCI and Timolol Maleate are presented
in Figure 5-1 and 2.
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Figure 5-1. Ciprofloxacin HCI standard curve. Drug absorbance was read at A=274 nm.
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Figure 5-2. Timolol Maleate standard curve. Drug absorbance was read at A=295 nm.
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5.2.3 Preparation of Contact Lenses

Two commercially available silicone hydrogel contact lenses, balafilcon A and
senofilcon A were used in this study. The chemical properties of these lenses were presented
in Table 3-1. Lenses were first incubated for 24 hours in PBS to remove any remnants of their
packaging solution. The lenses were then incubated in 1.5ml of the drug solution for 24 hours.

5.2.4 Hydrophilic Drugs Uptake and Release

After a 24 hour incubation in PBS, contact lenses were soaked in 1.5ml of drug solution
for 24 hours. The lenses were put on three release models (No cell, Fixed and Live monolayer).
The volume of liquid in the cell insert was 0.5ml and 1.0ml in the bottom well. The release
was studied for up to 48 hours. Aliquots of 100 pl were taken from the bottom of the in vitro
models and replaced by fresh culture medium. Samples were taken at 1, 4, 8, 12, 24 and 48
hours. Collected samples were analyzed via a UV-Vis spectrophometry (SPECTRA max
PLUS 384 Made in USA) at wavelengths of 274 nm and 295 nm for Ciprofloxacin HCI and
Timolol Maleate respectively. To determine the uptake amount by the contact lenses, samples
were also collected from the soaking drug solution as well as the remaining drug solutions after
soaking the lenses. Each set of experiment were repeated 3 times independently. Drug

concentrations were calculated based on the equation explained previously in Chapter 3.

5.2.5 Data Analysis

Results presented here are the meantstandard deviation of three independent
experiments. Statistical analysis of data was performed by two-way analysis of variance
(ANOVA) using Minitab Express™ Software. A p value of less than 0.05 was required for

statistical significance.
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5.3 Results

5.3.1 Ciprofloxacin HCI Uptake and Release

The uptake and release amount of Ciprofloxacin HCI from balafilcon A and senofilcon A
with initial loading concentration are presented in Table 5-1. The total Ciprofloxacin HCI
uptake by balafilcon A was 4672.8+60.4ug after 24 hours which was 14.1+6.1% of the total
available drug to the contact lens. The total amount of the drug uptaken by senofilcon A was
4726.2+105.6 ug or 43.6£1.4% of the available drug in the 1.5 ml doping solution. The
Ciprofloxacin uptake by senofilcon A was significantly higher than that of balafilcon A
(p<0.0001). The maximum amounts of Ciprofloxacin HCI released from balafilcon A after 48
hours were 145.2+20.1, 143.9416.1 and 186.2+31.0 g in the live monolayer, fixed monolayer
and no-cell models respectively, whereas the maximum released drug from senofilcon A were
45.1+2.2, 42.2+0.3 and 58.3+2. 6 g for live, fixed and no-cell models respectively. While
senofilcon A uptake was higher than balafilcon A, the amounts of Ciprofloxacin HCI released
from senofilcon A in all three models were significantly lower than from balafilcon A
(p<0.0001). While there was no significant difference in Ciprofloxacin HCI released between
the live and fixed model (p= 0.7867), the released amount of Ciprofloxacin HCI was
significantly higher in the no-cell model compared to live and fixed models regardless of
contact lens material (p= 0.0170).
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Table 5-1. Ciprofloxacin HCI uptake into balafilcon A and senofilcon A contact lenses and total amount of drug released after 48 hours through the live HCEC
monolayer in vitro model. Lenses were soaked for 24 hours in drug solutions (3000 ug/ml) and then drug uptake into the lens were measured. Uptake and release
experiments were conducted in three separate dates n = 3, Mean + SD

Theoretical concentration? 3000
(ug Ciprofloxacin/ml)
; ion2
Actual Ioa_ldlng concentration 9942 0470 4
(ug Ciprofloxacin/ml)
In vitro Model Live Monolayer Fixed Monolayer No-cell*
Uptake§ Release§ Release§ Release§
(%) (H9) (%) (H9) (%) (H9) (%) (H9)
balafilcon A 14.1+6.1 | 4672.8+60.4 | 3.1+0.4 | 145.2+20.1 | 30.8+0.3 | 143.9+16.1 | 39.9+0.7 | 186.2+31.0
senofilcon A8 43.6+1.4 | 4726.2+105.6 | 0.9+0.1 | 45.1+2.2 | 0.9+0.0 | 42.2+0.3 | 1.2+0.1 | 58.3+2.6

1 Expected (nominal) concentration based on the manufacturer’s label.
2 Concentration of the solution measured by Spectrophotometry
* Significantly different compared to fixed and live models (p<0.0170)

8 Significantly different compared to balafilcon A (p<0.0001)
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The release profile of Ciprofloxacin HCI from balafilcon A through no-cell, live and fixed
monolayer in vitro models are presented in Figure 5-3. As can be seen on Figure 5-3, the release
profiles of Ciprofloxacin in all three models were not linear, indicating that the rate of release
from contact lens is not constant regardless of the in vitro model. The amount of drug release
in the no-cell model was significantly higher and a faster equilibrium can be observed in this
model. In the no-cell model, about ~70% of the maximum released amount of Ciprofloxacin
HCI was eluted in the media in the first 8 hours of the experiments while only ~45% and ~53%
of the maximum released amounts were depleted from balafilcon A lenses in this period of

time in the live and fixed models respectively.

The release profile of Ciprofloxacin HCI from senofilcon A through no-cell, live and fixed
monolayer in vitro models are presented in Figure 5-4. Similarly to balafilcon A, the release
profiles of Ciprofloxacin HCI from senofilcon A did not present a zero-order release regardless
of the in vitro models used, although the amount of drug release in the no-cell model was
significantly higher compared to the live and fixed models. In the no-cell model about ~66%
of the maximum released amount of the drug was eluted in the first 12 hours of the experiments
while only ~47% and ~57% of the maximum released amounts were released from senofilcon

A in the live and fixed models respectively after 12 hours.
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Figure 5-3 Ciprofloxacin HCI release from balafilcon A contact lenses through live and fixed HCEC monolayer
and No-cell models. Cells were fixed in 2% paraformaldehyde. Lenses were soaked for 24 hours in drug
solution (3000 ug/ml) and then overlaid on the monolayer for 48 hours. Release experiments were conducted
in three separate dates n = 3, Mean + SD.

* Significantly different than fixed and live models (p<0.0094)
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Figure 5-4. Ciprofloxacin HCI release from senofilcon A contact lenses through live and fixed HCEC
monolayer and No-cell models. Cells were fixed in 2% paraformaldehyde. Lenses were soaked for 24 hours in
drug solution (3000 ug/ml) and then overlaid on the monolayer for 48 hours. Release experiments were
conducted in three separate dates n = 3, Mean + SD.

* Significantly different than fixed and live models (p<0.0015)

5.3.2 Timolol Maleate Uptake and Release

The uptake and release amount of Timolol maleate from balafilcon A and senofilcon
A lenses with their initial loading concentrations are presented in Table 5-2. The total Timolol
available to contact lenses was 16677+18.8 pg and the total uptake by balafilcon A after 24
hours was 1591.1+72.2jug or 10.9+3.5% of the total available drug. The total amount of the
drug uptaken by senofilcon A was 1602.4+170.7 ug or 10.6+5.5% of available drug to the lens.
There was no significant difference in Timolol uptakes between senofilcon A and balafilcon
A (p=0.6108). The total amounts of Timolol released from balafilcon A after 48 hours were
56.9+17.7, 37.1+6.7 and 35.2+15.5ug in the live, fixed and no-cell models respectively,
whereas the maximum released amount of the drug from senofilcon A were 45.3+£19.2,

28.5+9.4 and 29.3+15.6ug for live, fixed and no-cell models respectively. There was a
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significant difference between contact lens material in the amount of released Timolol
regardless of the in vitro model used (p<0.0001). No significant difference in the released
amount of the drug after 48 hours was observed between the no cell, live and fixed models,

regardless of contact lens material (p= 0.2391).
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Table 5-2 Timolol Maleate uptake into balafilcon A and senofilcon A contact lenses and total amount of drug released after 48 hours through the live HCEC

monolayer in vitro model. Lenses were soaked for 24 hours in drug solutions (1000 pg/ml) and then drug uptake into the lens were measured. Uptake experiments
were conducted in three separate dates n = 3, Mean + SD

Theoretical concentration®
(ug Timolol/ml) 1000
Actual loading concentration?
(g Timolol/ml) 1118.2+12. 6
In Vitro Model Live Monolayer Fixed Monolayer No-cell
Uptake Release Release Release
(%) (H9) (%) (Hg) (%) (H9) (%) (Hg)
balafilcon A 10.9+£3.5 1591.1+£72.2 3.6x1.1 56.9£17.7 2.3x04 | 37.1+6.7 | 22.1£1.0 35.2£15.5
senofilcon A8 10.6+5.5 | 1602.4+170.7 | 2.8+1.2 | 453+19.2 | 1.8+0.6 |28.5+9.4 | 1.8+1.0 29.3+15.6

! Expected (nominal) concentration based on the manufacturer’s label.
2 Concentration of the solution measured by Spectrophotometry
8 Release significantly different compared to balafilcon A (p<0.0001)
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The release profile of Timolol maleate from balafilcon A through no-cell, live and fixed
monolayer in vitro models are presented in Figure 5-5. As can be observed, the release rates of
Timolol in all in vitro models are not constant. The rate of release diminishes after 12 hours
approaching the equilibrium regardless of lens type and in vitro models used; this indicates a
first-order release rate. However, unlike Ciprofloxacin HCI release results, there was no
significant difference in the amount of Timolol released in the no-cell model compared to the
fixed and live models, but a faster rate to reach the saturation can be observed in this model
compared to fixed and live models. In the no-cell model about ~83% of the maximum released
amount of Timolol was eluted in the beginning of the experiments (4 hours) while only ~47%
and ~46% of the maximum released amounts were depleted from balafilcon A lenses in this
period of time in the live and fixed models respectively. The release profile of Timolol from
senofilcon A through no-cell, live and fixed monolayer in vitro models are presented in Figure
5-6. Similar to balafilcon A, the release profiles of Timolol from senofilcon A do not present
a constant rate of release regardless of the in vitro models tested. However, the amount of drug
released in the no-cell model was significantly higher for this lens with an initial burst of ~62%
of the total released drug while, after 4 hours, ~36% and ~35% of the maximum released

amounts were released from balafilcon A in the live and fixed models respectively.
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Figure 5-5. Timolol Maleate release from balafilcon A contact lenses through live and fixed HCEC
monolayer and No-cell models. Cells were fixed in 2% paraformaldehyde. Lenses were soaked for 24 hours
in drug solution (1000 ug/ml) and then overlaid on the monolayer for 48 hours. Release experiments were
conducted in three separate dates n = 3, Mean + SD.

* Significantly different than fixed and live models (p<0.0164)
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Figure 5-6. Timolol Maleate release from senofilcon A contact lenses through live and fixed HCEC
monolayer and No-cell models. Cells were fixed in 2% Paraformaldehyde. Lenses were soaked for 24 hours
in drug solution (1000 pg/ml) and then overlaid on the monolayer for 48 hours. Release experiments were
conducted in three separate dates n = 3, Mean + SD.

* Significantly different than fixed and live models (p<0.0196)

5.4 Discussion

In this part of the project, we assessed in vitro the release kinetics of drug eluting
silicone hydrogel contact lenses loaded with hydrophilic Ciprofloxacin HCI and Timolol
Maleate in the presence of corneal epithelial cells and compared them to their release Kinetics
in a fixed-volume in vitro model with no-cells. The main problem reported extensively by
studies on drug-soaked commercially marketed contact lenses is the release time, which is
limited to minute to hours (Campoli-Richards et al. 1988; Karlgard et al. 2003; Hui et al. 2008;
Nguyen et al. 2012). Several strategies have been explored to improve the release kinetics of

commercially available contact lenses such as loading Vitamin E as a diffusional barrier to
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slow down the release and extend the drug delivery (Hsu et al., 2013; Hui et al., 2014; Peng et
al., 2012).

Hui et al. have investigated the uptake and release of Ciprofloxacin HCI by commercially
available conventional and silicone hydrogel contact lenses. Three different contact lenses
were soaked in 6000 ug of the drug (2 ml of 0.3% Ciprofloxacin solution in PBS). The contact
lenses released an average amount of 133 pg/lens but the drug release reached a plateaue within
10 minutes. Despite attemps to modify Ciprofloxacin release kinetics using molecular
imprinting techniques with a model silicone hydrogel contact lens (Hui et al., 2014), fixed-
volume in vitro results in borate buffered saline (BBS) showed a maximum release of 361+5ug
of Ciprofloxacin over a 6 day period where ~87% of the drug was released in the first day by
an initial burst. While our results tend to agree with Hui el as for the fact that a plateau is
reached early on, our slightly longer time of release before saturation may be due the difference
in material chemistry (balafilcon A and senofilcon A were not tested in that study) as well as
the difference in release medium (PBS versus KSFM). Mohammadi et al have previously
reported a small difference in release between PBS and KSFM.

Our no-cell, live and fixed model results are comparable with previously published in vitro
release results for Timolol (Saettone et al. 1996; Kim et al. 2008; Peng et al. 2012) whereby it
was observed that the release rate of hyrophilic Timolol from silicone hydrogels follows a first
order kinetics.The difference in results between rate and amount of released drug are due to
the difference in release media, contact lens material and in vitro experimental models.
Comparison of cirpfloxacin HCI and Timolol maleate release profile with Latanoprost
indicates that presence of live cells in the model do not change the order of release rate to a
constant zero-order decay. Since hydrophilic drugs permeate via paracellular routes by passive
difussion rather than active cell transport, presence of cells in the release model act as a
diffussion barrier and prolongs the release kinetics of hydrophilic drugs (Sakanaka et al.,
2006). The similarities in results between the live and fixed cell models for Timolol and
Ciprofloxacin from both contact lens materials further supports this hypothesis.

Our in vitro results agree with works of others (Hui et al., 2014, 2012, 2008; Nguyen et al.,
2012) that the release kinetics of hydrophilic drugs from silicone hydrogels follow the first-
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order decay rate. However, our in vitro release experiments in the presence of corneal
epithelial cells, which act as an active barrier also highlight that the release of hydrophilic
drugs from commercial contact lenses is prolonged when tested with realistic diffusion and
permeation conditions. While the difference may be small and has minimal impact on the poor
outcome of soaking contact lenses in hydrophilic drugs, our data further highlight the

difference that the presence of cells has when assessing drug release in vitro.
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Chapter 6

Conclusions

The cornea is the main barrier against the permeation of ocular drugs to the anterior
chamber. Hydrophobic and hydrophilic drugs permeate through different transcorneal routes.
In feasibility assessment of drug delivery contact lenses, the role of these barriers and the
biological interaction of corneal cells with the drug/lens complex must be taken into account.
In this thesis, the presence of the prostaglandin transporter OATP 2Al in immortalized human
corneal epithelial cell line has been verified. The role of drug transporters in transcorneal
permeation becomes important when hydrophobic drugs interact with the cornea. The active
transcellular transport plays an important role in transcorneal permeation of hydrophobic
molecules. Fixing cells almost entirely abolish transcorneal permeation of the hydrophobic
Latanoprost; ~90% decrease in the permeation of the drug was observed compared to the live
cell model. Inhibition of the prostaglandin transporter OATP 2A1 significantly decreased the
rate and the amount of Latanoprost released from both contact lens materials tested. Only 50%
of Latanoprost transport was inhibited suggesting that the active transcellular transport of
Latanoprost may not be mediated only by OATP 2A1. Other transporters might be involved in
transport of Latanoprost as well. From our in vitro experiments, it appears that a combination
of mechanisms are involved which are driven mainly by transcellular molecular mediated
active transport and partially by passive diffusion-solution through lipid bilayers of cell
membranes. These mechanisms govern the total permeation of hydrophobic drugs across the

corneal epithelium.

Proper dosing and a sustainable zero-order release rate are the ultimate goals in designing
therapeutic contact lenses. Silicone hydrogels showed a zero-order release profile for
Latanoprost when assessed in vitro in the presence of corneal epithelial cells. Initial loading

concentration of the drug had a significant effect on the rate of release.
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The uptake of hydrophilic drugs by silicone hydrogels were significantly lower than the uptake
of hydrophobic Latanoprost, and the released amount of hydrophilic drugs were significantly
higher than Latanoprost. Hydrophilic drugs have lower affinity to silicone hydrogels than
hydrophobic molecules. Our results further confirm that chemical interaction between drug
molecules and contact lens polymer must be taken into account in the design of the controlled
release system. As well, the testing conditions and presence of biological barriers provided by
cells can produce a more realistic test platform for studying the release kinetics for the ocular
environment. All in all, this thesis confirms the importance of proper selection of in vitro test

models for the assessment of ocular drug delivery system.
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Chapter 7

Recommendations for Future Works

This research contributes a small building block to the massive construction of ocular drug
delivery science but leaves also us with many unanswered questions. The following are few

recommendations for future research.

To further characterize the corneal in vitro model and assess the corneal permeation, it is
recommended to test more combination of hydrophobic ophthalmics and silicone hydrogel
lenses, this may give more solid ground to stand on and make more inferences on mechanism
of corneal drug transport. It is also recommended to characterize the human corneal epithelial

cell line for drug metabolism enzymes and esterase activity of the enzymes on prodrugs.

To obtain more valid in vitro release data, it is recommended to measure the Latanoprost and
other drugs release rates in an in vitro model with a dynamic condition mimicking the ocular
environment. For instance in order to have an in vitro model which has a better prediction of
in vivo results, it is recommended to study the release rate of the drugs from different contact
lens materials on a stratified curved corneal 3D construct and test them under the effect of tear
replenishment with the newly developed microfluidics tear replenishment system (TRS) at the
MIBS lab.

Performing ex vivo experiments with excised animal cornea may help to assess the corneal
penetration rate as well as provide comparison points to evaluate the validity of in vitro results.

Ex vivo experiment can also be performed in a dynamic environment.

Mathematical modeling of contact lens release mechanism in the corneal in vitro model may
provide a predictive tool for the design of therapeutic contact lens as well as for prediction of

transcorneal drug diffusion.
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Appendix A Complementary Experiments

In order to understand the effect of membrane material used in cell culture inserts on the release
profile of Latanoprost, a set of experiments was designed in absence of contact lenses. 0.5 ml
of 161pg/ml Latanoprost solution in PBS was added on top of a monolayer grown on PET and
cellulose inserts and 1ml of KSFM to the bottom. 100ul of samples were taken every 30

minutes up to 4 hours and then after 12 and 24 hours. Samples were analyzed using EIA Kit.
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Figure 7-1. Latanoprost release experiment, through cellulose membrane inserts versus Polyethylene
terephthalate (PET) membrane, monolayer of (HCECs) with no contact lens, and drug solution on top with
initial concentration of 161 pg/ml. All membranes were collagen-coated prior to cell culture and release

experiments. . n=2, Mean £SD
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Figure 7-2 MTT viability test on live, transporter inhibited and fixed HCEC monolayer models. Cells were
incubated with 100uM Diclofenac sodium for 24 hours to inhibit the transporters. Cell were fixed in 2%
paraformaldehyde solution in PBS for 24 hours. n=3, Mean +SD

69



100
90

80
70
60
50
40
30
20
10
0 o

Live Fixed

Viability (%)

M balafilcon A msenofilcon A ®No lens
Figure 7-3 MTT viability test performed on live and fixed HCEC monolayer models after Ciprofloxacin HCI

release experiments. Ciprofloxacin HCI concentration was 3 mg/ml in the No-Lens model. Cells were fixed
in 2% paraformaldehyde solution in PBS for 24 hours. n=3, Mean £SD
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Figure 7-4 MTT viability test performed on live and fixed HCEC monolayer models after Timolol maleate

release experiments. Timolol Maleate concentration was 1 mg/ml in the No-Lens model. Cells were fixed in
2% paraformaldehyde solution in PBS for 24 hours. n=3, Mean +SD
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