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Abstract

Bioinformatics is a rapidly expanding field of research due to multiple recent advance-

ments: 1) the advent of machine intelligence, 2) the increase of computing power, 3)

our better understanding of the underlying biomolecular mechanisms, and 4) the drastic

reduction of biosequencing cost and time. Since wet laboratory approaches to analysing

the protein sequencing is still labour intensive and time consuming, more cost-effective

computational approaches for analyzing protein sequences and their biochemical interac-

tions are crucial. This is especially true when we encounter a large collection of protein

sequences.

Aligned Pattern CLustering (APCL), an algorithm which combines machine intelligence

methodologies such as pattern recognition, pattern discovery, pattern clustering and

alignment, formulated by my research group and myself, is one such technique. APCL

discovers, prunes, and clusters aligned statistically significant patterns to assemble a re-

lated, or specifically, a homologous group of patterns in the form of an Aligned Pattern

Cluster (APC). The APC obtained is found to correspond to statistically and func-

tionally significant association patterns, which corresponds as conserved regions, such

as binding segments within and between protein sequences as well as between Pro-

tein Transcription Factor (TF) and DNA Transcription Factor Binding Sites (TFBS) in

many of our empirical experiments. While several known algorithms also exist to find

functionally conserved segments in biosequences, they are less flexible and require more

parameters than what APCL requires. Hence, APCL is a powerful tool to analyze biose-

quences. Because of its effectiveness, the usefulness of APCL is further expanded from

the assist of discovering and analyzing functional regions of protein sequences to the ex-

ploration of co-occurrence of patterns on the same sequences or on interacting patterns

between sequences from the discovered APCs. Two new algorithms are introduced and

reported in this thesis in the exploration of 1) APCs containing patterns residing within

the same biosequences and 2) APCs containing patterns residing between interacting

biosequences.

The first algorithm attempts to cluster APCs from APCs that share patterns on the

same biosequences. It uses a co-occurrence score between APCs in a co-occurrence

APC pair (two APCs containing co-occurrence patterns) to account for the proportion

of biosequences of co-occurrence patterns they share against the total number of se-

quences containing them. Using this score as a similarity measure (or more precisely,

as a co-occurring measure), we devise a Co-occurrence APC Clustering Algorithm to

cluster APCs obtained from a collection of related biosequences into a Co-Occurrence

Cluster of APCs abbreviated by cAPC. It is then analyzed and verified to see whether or
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not there are essential biological functions associating with the APCs within that clus-

ter. Cytochrome c and ubiquitin families were analyzed in depth, and it was validated

that members in the same cAPC do cover the functional regions that have essential

cooperative biological functions.

The second algorithm takes advantage of the effectiveness of APCL to create a protein-

protein interaction (PPI) identification and prediction algorithm. PPI prediction is a

hot research problem in bioinformatics and proteomic. A good number of algorithms

exist. The state of the art algorithm is one which could achieve high success rate in

prediction performance, but provides results that are difficult to interpret. The research

in this thesis tries to overcome this hurdle. This second algorithm uses an APC-PPI

score between two APCs to account for the proportion of patterns residing on two

different protein sequences. This score measures how often patterns in both APCs co-

occur in the sequence data of two known interacting proteins. The scores are then

used to construct feature vectors to first train a learning model from the known PPI

data and later used to predict the possible PPI between a protein pair. The algorithm

performance was comparable to the state of the art algorithms, but provided results

that are interpretable.

The results from both algorithms built upon the extension of APCL in finding co-

occurring patterns via co-occurrence of APCs are proved to be effective and useful since

its performance in finding APCs is fast and effective. The first algorithm discovered

biological insights, supported by biological literature, which are typically unable to be

discovered solely through the analysis of biosequences. The second algorithm succeeded

in providing accurate and descriptive PPI predictions. Hence, these two algorithms are

useful in the analysis and prediction of proteins. In addition, through continued research

and development to the second algorithm, it will be a powerful tool for the drug industry,

as it can help find new PPI, an important step in developing new drugs for different

drug targets.
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Chapter 1

Introduction

Bioinformatics is a vastly growing research field which incorporates theory and method-

ologies in statistical pattern recognition, machine learning, and computational methods

in the analysis of biological data, especially biosequence and micro-array data. His-

torically, biological experimental data has been analyzed through biochemical, physical

and computational experiments, such as mass spectrometry which needs both biology

wet laboratories and biology professionals. Such analyses are crucial for the final con-

firmation of the physical truth, yet usually involve numerous trial processes, which are

very expensive and time consuming. However, since obtaining biosequence data is effec-

tive in the recent decades, there exists an attractive alternative. This alternative gets

biological information directly from the sequence data coded for biomolecular struc-

tures and functions inherently in the biosequences, rather than going through numerous

direct trials on wet laboratory experiments until the final confirmation. From such in-

formation, we could acquire more reliable results directly discovered and screened from

sequence data via bioinformatic pattern discovery and analysis processes. Nevertheless,

the use of bioinformatics to analyze biosequence data for revealing inherent conserved

functionality in the past requires large amounts of data to justify the use of statistics.

Even so, it has not rendered more specifically high quality predictive and interpretable

results. Therefore, it needs more effective and intelligent computation to analyze the

ample amount of such data and generate more accurate and specific results for further

analysis and laboratory confirmation. Taking advantage of computational processing

and computational capacity, we are able to make the analysis of biological data faster

and cheaper using new and established algorithms developed in pattern recognition and

machine intelligence [5].

One aspect of bioinformatics applications is the analysis of protein sequences, which are

easy to obtain and are directly related to protein structures, functions and interactions.
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Chapter 1. Introduction

With protein sequences, we aim to analyze them in order to understand more about their

underlying functional and interaction mechanisms. For example, two characteristics that

are worth analyzing are proteins’ a) ability to fold and interact from their functional

segments and b) involvement in interactions, i.e. in Protein-Protein Interactions (PPIs

in brief). The first application enables us to have better understanding of the functional

and mutational hot spots of the protein. The second application is important because

by knowing how one protein interacts with others, we might be able to learn more about

how proteins regulate disease control for better drug target discovery. These are the key

questions when devising new drugs to combat diseases. Hence the analysis of protein

sequences is important because any discovery based on bioinformatics techniques using

only protein sequence data including those in the databases in the Web will be faster

and cheaper when compared to biological wet laboratory experiments.

My research group has been developing new algorithms to further advance bioinfor-

matics in protein sequence analysis. One such algorithm is known as Aligned Pattern

Clustering (APCL). This algorithm is designed to analyse protein sequences and to re-

veal functionally conserved and mutated residue association and sites of protein local

regions. Furthermore in [6], APCL has been found to be very effective in revealing and

locating functionally important regions, and hence it is an effective algorithm for ex-

ploring and studying protein functionality. The objective of this thesis is to extend the

capability of APCL to the discovery of not only the conserved functional regions but

also the co-occurrence regions on the same sequences or between interacting sequences

to reveal joint functionality such as site/residue binding and interacting sites between

proteins respectively, and to find out if functional regions are likely candidates of binding

or interacting sites between proteins. In view of these, I introduce and incorporate the

idea referred to as co-occurrence of APCs to new algorithms which are able to cluster

APCs if an appropriate co-occurrence measure between them can be used as a similarity

measure to group them together. This idea aims to solve the following problem: can

we create a quantifiable relationship between APCs that account for the majority of

similar patterns co-occurring on the same sequences or interacting between sequences.

Co-occurrence usually reflects inherent joint functionality such as containing binding or

interaction sites/residues within and/or between protein sequences respectively. This

thesis reports the formulation, implementation and experimentation of the proposed

construct and renders interesting results for identifying and locating important regions

of the same protein in the folded configuration and the interaction between two proteins

in a PPI setting.
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Chapter 1. Introduction

1.1 Thesis Contributions

The contributions of this thesis can be assessed in two aspects presented in Chapters

3 and 4. Both contributions are associated with the meticulous use of APCL in a new

setting. Each aspect of this thesis’s contribution can be described as follows:

1.1.1 Using Co-occurrence APCs to Reveal Interacting Regions within

Protein Families

In this aspect, we extended the usefulness of APCs by incorporating a method to discover

patterns and obtain APCs each of which may contain patterns residing on the same

sequences. Because of the functional conservation characteristics of APCs, this relation

of having patterns residing on the same sequence indicates that the co-occurrence regions

are functionally important. Furthermore, there is joint functionalities between patterns

of APCs in a co-occurrence APCs group. For example, their patterns may be associated

with the cooperative interaction / binding function.

1.1.2 Using Co-occurrence APCs to Predict Protein-Protein Interac-

tions

In this aspect of contribution, the usefulness of APCs is expanded by using them to

identify and predict protein-protein interactions (PPI). Using only protein sequences and

previous known PPI data, the devised algorithm takes advantage of patterns discovered

in the form of APCs and the PPI knowledge acquired in the PPI database on the Web.

It then obtains feature vectors from the training PPI datasets to build a classifier. For

given pairs of protein sequences from the test set, it can use the classifier to output

predictions with performance comparable to the state of the art algorithms, yet render

interpretable sites which are not furnished by its counterparts.

1.2 Outline

The outline of the thesis is as follows. Chapter 2 will provide a biological background of

the two major parts of this thesis, including the definition of biological terms. It will also

provide the details of Aligned Pattern Clustering (APCL) and a related set of algorithms

created by my research team, and the algorithms I contributed on top of the related

works. Chapter 3 presents the first application of my APC co-occurrence algorithm on

proteins of the same protein family, describing both the discovery and validation of the

3



Chapter 1. Introduction

results. Chapter 4 presents another application of my APC co-occurrence algorithm on

proteins with known protein-protein interaction. We obtain a set of feature vectors to

obtain a useful matrix in the learning phase and use it to predict the PPI in the testing

case. Finally, Chapter 5 summarizes and concludes the thesis.
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Chapter 2

Background

In this part, terminology that will be heavily used in the thesis, including protein,

protein-protein interactions and Aligned Pattern Clusters (APCs) and other compo-

nents, will be introduced. Furthermore, the various aspects of the thesis will address

and discuss how the proposed methodology is used to analyze protein functions and

interactions.

2.1 Biological Overview

2.1.1 Proteins

Proteins are biomolecules that have important and diverse biological functions, which

include, but are not limited to, electron transfer, receptors and storage. Despite the

various functions, shapes and sizes of proteins, they are all based on the same group of

20 amino acids. The proteins only differ in the composition and sequential association

of the amino acids. (For example, one protein may have more of one type of amino acid

than another protein) [7]. The sequential association of an amino acid segment govern

not only the local biological function but also its folding, binding/interaction with other

parts of the same protein or with sites of other proteins or other biosequences such as

DNA. Research on proteins are important, not only because they are responsible for

many important biological functions, but also the mutational impact of hot spots and

regions. Considerable research has been conducted to study the loss or impairment

of such functions due to mutation, even if the mutation is only a slight variation on

the proteins. Such variation could lead to massive complications in the function of

the protein and its interaction with other biosequences. For example, cystic fibrosis
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Chapter 2. Background

is a disease that mutates a protein called cystic fibrosis transmembrane conductance

regulator (CFTR). People with this disease have breathing and digestive problems [7].

2.1.2 Amino Acids

The twenty amino acids are twenty macro- molecules which contain the elements car-

bon, hydrogen, nitrogen, and oxygen. Two of the 20 amino acids additionally contain

sulfur rendering a different composition of the elements. For simplicity, each amino acid

can be represented by an English letter most of which are derived from their full names.

They are: {A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V } [7].

2.1.3 Protein Structure

To represent proteins, there are several structural levels of representation, namely, the

primary structure, the secondary structure, the tertiary structure and the quaternary

structure [7] (Figure 2.1), with each subsequent structure providing more detail of the

protein than the previous one. In particular, the primary structure, or protein sequence,

provides only the amino acid arrangement of the protein, and hence is a one-dimensional

structure with complex amino acid associations. In comparison, all three subsequent

structures are three-dimensional structures. Figure 2.2 shows both the primary and

tertiary structure of the same protein, cytochrome c-553.

Different laboratory experiments are used to obtain the different protein structures.

For protein sequences, sequencing techniques such as mass spectrometry and Edman

sequencing [8] are used. For three-dimensional structures, techniques such as X-ray

crystallography [9] are applied.

Figure 2.1: The four levels of protein structures

2.1.4 Protein Families

One way to categorize a protein is to use the sequence data and the acquired knowledge of

protein families. Protein families are a collection of proteins that have evolved from the
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Figure 2.2: The primary and tertiary structure of a portion from the cytochrome c
protein family, cytochrome c-553. The purple amino acids are the binding sites and the
green amino acid is the metal binding site, as per [10, 11]. All three amino acids are
part of the functional region of the protein. A) The primary structure of the protein
[UniprotKB ID: P82599] [10, 11]. B) The tertiary structure of the protein [PDB ID:

1B7V] [12, 13]

same ancestor. Hence, proteins from the same protein family would have similar selection

and arrangements of its amino acids, and have similar characteristics and functions [14].

Therefore, analyzing protein families is useful to reveal and understand common function

across the proteins in a protein family.

2.1.5 Protein Databases

Thanks to the collaborative efforts in sequencing in the biologist community, there is

currently a vast amount of known protein sequences on the Web. To facilitate possible

computational analysis on these known protein sequences, several online databases exist

to furnish public access to these protein sequences. For example, Uniprot [10] is a protein

database that provides public access to 80 million protein sequences and their related

annotations.

Another database is the Pfam [14] database, which provides access to thousands of

protein families, including additional info such as a hidden Markov models of the protein

family. Lastly, Protein Data Bank (PDB) [12] is a database that contains known protein

three-dimensional structures.

The data used in the analysis in the subsequent chapters are collected from Uniprot and

Pfam, and results are validated using PDB if necessary. This shows the importance of

these databases in providing the necessary tools for bioinformatic analysis.

7
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2.1.6 Protein Binding Sites and Protein-Protein Interactions

To facilitate the various functions of proteins, proteins need to have the ability to interact

with other molecules (proteins, DNA, compound ions, etc.) or itself. In particular,

when a protein interacts with another protein, it is referred to as protein-protein

interaction (PPI) [15]. However, there are specific regions in the protein that are

responsible for the protein’s interaction with other molecules. These regions are referred

as protein binding sites. In the example of cytochrome c-533, the protein needs

to bind with a heme, an iron compound ion, for the protein to function as a part of

the electron transport chain [16]. Figure 2.2 displays both the protein sequence and

the three-dimensional structure of the cytochrome c-533, highlighting the only known

protein binding site, or functional region, consisting of three amino acids that are crucial

in interaction [10, 11], despite having 92 amino acids in this protein. Therefore, not only

it is important to know the PPIs among interacting proteins, but also it is important to

know the regions which are involved in those interactions.

2.2 Protein Sequence Analysis

Within the analysis of proteins, there are many analyses related to protein sequences.

One group of protein sequence analysis is multiple sequence alignment. Multiple se-

quence alignment (MSA) takes multiple related protein sequences (for example, from

the same protein family) and aligns the protein sequences, optimizing the similarity

of amino acids on the aligned sites (or columns), inserting blanks within each protein

sequence if necessary, such that the ideally aligning columns would have the same or

almost the same amino acid for all protein sequences. The various MSA algorithms vary

in the methods used to align the protein sequences. The method of progressive align-

ments, as opposed to exact alignments, does not align all sequences at the same time,

but merges and aligns protein sequences based on a particular order. The advantage

of progressive alignments is that it narrows down the possible alignment solution using

a greedy algorithm. It thus greatly lowers the running time compared to that of exact

alignment, though it might not provide the global optimal solution. Algorithms such

as ClustralW [17], T-Coffee [18] and ProbCons [19] are examples of progress alignment

MSA. In ClustralW, a tree is formed based on the protein sequence between all possi-

ble protein pairs. The tree level is then used as the order of which protein sequences

are merged and aligned in progress alignments. However, one issue of ClustralW, as

stated by Notredame [18], is that errors made in earlier merges will persist, and will

be unable to be fixed in the subsequent merges. T-Coffee fixed the issue through the
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use of a library that combines local and global alignment to ensure consistent align-

ment. Finally ProbCons introduced probabilistic alignment, adding a scoring function

to measure alignment quality [19].

Another approach to protein sequence analysis is motif discovery. Instead of aligning

protein sequences as a whole, motif discovery aims to find short amino acid patterns that

occur repeatedly in the protein sequence. Similarly, the goal is to find regions in these

protein sequences that are important, and hence, consistent across the protein sequences.

Examples of motif discovery algorithms includes MEME [20], BLOCKS [21] and BLAST

[22]. BLOCKS and BLAST compare input with known discovery for any similar motifs.

BLOCKS compares the protein sequence to motifs in the BLOCK database, and BLAST

compares the sequence with other sequences in Uniprot [10]. Our team’s Aligned Pattern

Clustering is an example of a motif discovery algorithm. However, the algorithm does

not require any known motifs and has the ability to discover statistically associated

segments as delimited motifs with slight variations, and therefore is a more flexible

algorithm.

Outside of pure protein sequence analysis, one area of research is protein-protein in-

teraction prediction (PPI Prediction). Using data of known related proteins, including

protein family sequences, one of the major goals of bioinformatics is to predict PPIs of

new protein candidates. Well known algorithms includes PIPE [23] / PIPE2 [24, 25]

algorithm, and several that uses support vector machines (SVMs) [26–31]. While SVMs

provide higher prediction performance, PIPE provides more interpretable results. How-

ever, this thesis aims to create an algorithm built on APCL that will have high prediction

performance while providing interpretable results.

2.3 Aligned Pattern Clusters

Aligned Pattern Clustering (APCL) is composed of two algorithms that find potential

conserved functional regions, including potential protein binding and interaction sites

computationally. The two algorithms are 1) a pattern discovery algorithm that dis-

covers statistically significant sequence patterns from a set of sequences of a protein

family while pruning the redundant patterns [32]; and 2) an Aligned Pattern Cluster-

ing (APCL) algorithm that identifies homologous compact aligned groups of statistically

significant patterns referred to as APCs. These APCs contain variations with adjustable

low information entropy [6]. The details of the two algorithms are obtained from [3].
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2.3.1 Input data

Based on the definition of protein structure, let Σ = {A,R,N,D,C,E,Q,G,H, I, L,K,M,

F, P, S, T,W, Y, V } be the protein alphabet containing twenty standard amino acids

(|Σ| = 20). A protein sequence, or protein primary structure, S = σ1σ2 . . . σ|S|−1σ|S| is

an element of Σ∗, where each σi ∈ Σ and S is of length |S|. Let the set of input protein

sequences be defined as S = {Sx|l = 1, ..., |S|} = {S1, S2, . . . , S|S|−1, S|S|}. The input

protein sequence set can either be from the same protein family (Chapter 3) or have

known protein-protein interactions between each sequence pair (Chapter 4). Sequence

patterns are then discovered from this input dataset in the next step.

2.3.2 Pattern discovery [3]

“Sequence patterns with statistically significant amino acid associations are first dis-

covered [32]. They are defined as an ordered sequence of interdependent symbols

p = σ1σ2...σ|n| from the alphabet Σ. The pattern p has length n, and the ith sym-

bol that appears in the sequence is σi. The list of patterns resulting from the pattern

discovery algorithm is represented by P = {pi|i = 1, ..., |P|} = {p1, p2, . . . , p|P|−1, p|P|},
and are pruned of redundant patterns.” [3]

2.3.3 Aligned Pattern Clustering [3]

“An APC describes a set of sequence patterns that have been grouped due to their

aligned similarities (as defined in [6]). Aligned patterns add gaps and wildcards to

maximize the vertical similarity of amino acids between the patterns. Let an APC be

defined as

C l = ALIGN


p1

p2

...

pm

 , (2.1)

=


σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n
...

...
...

...

σm1 σm2 . . . σmn


m×n

, (2.2)

where sigmaij ∈ Σ ∪ {−} ∪ {∗} is a symbol in pattern pi with a new column index j.

Note that − denotes a gap character and ∗ denotes a wildcard character. Each of the

|Pl| = m patterns in the rows of C l is of length |C l| = n.” [3]
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Let a set of APCs be defined as C = {C l|l = 1, ..., |C|} = {C1, C2, . . . , C |C|−1, C |C|}.

As seen in [33] APCs are successful in finding binding sites, or functionally important

domains for protein-protein interactions. With this success, I want to extend APCL to

expand its usefulness using a concept called co-occurrence of APC.

2.4 Motivations and Objectives

The motivation of my thesis is to extend the usefulness of APCs to provide a statistical

and functionally conserved base to reveal more of the structural and functional rela-

tions between protein regions. Specifically, using an idea called co-occurrence, which

quantifies the question: what proportion of patterns taken from each of the two APCs

reside on the same sequence? This co-occurrence was addressed in two different algo-

rithms covered in Chapter 3 and 4 (Figure 2.3) respectively. 1) The first algorithm

considers patterns co-occurring on the same protein sequence in a collection of protein

sequences. 2) The second algorithm considers that the co-occurrence APCs appear in

protein-protein interactions in a collection of potential protein-protein interacting pairs.

The current algorithms related to the second algorithm task either lack high prediction

performance or lack interpretable results.

There are two objectives to this thesis: 1) to provide a quantitative basis for revealing

site association relationship between the APCs, and 2) to conjecture possible biological

association between protein regions based on supporting evidences on their pattern co-

occurrence relationship.

‘
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Figure 2.3: The two different co-occurrence in the APC data space to be discussed
in Chapters 3 and 4. A) Calculates how often the patterns in the two APCs appear
together in the protein sequences in the data space. Here they appear 5 times. B)
Calculates how often the patterns in the two APCs data space appear together in the
APC pairs of the protein-protein interactions. Here they appear 4 times. Of notice
is that the protein-protein interaction between protein 2 and 9 is not counted despite
both APCs appearing in protein 2. This is because both proteins must be represented

by at least one of the two APCs.
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Chapter 3

Applying Co-occurrence APCs to

Discover Interacting Regions

within a Protein in Protein

Families

To expand the usefulness of APCs, we sought to extend the APCL algorithm by an-

alyzing the potential relationships between the APCs. For this chapter, we want to

retain one of the advantages of the APCL algorithm: obtaining results only from pro-

tein sequences. We hence use co-occurrence patterns in protein sequences and devise a

co-occurrence score between APC pairs. Several protein families were analyzed for this

algorithm, with two protein families, cytochrome c and ubiquitin, to provide further

insights. The APCs were discovered, and the co-occurrence score between them were

calculated. Then the APCs were clustered based on the co-occurrence relationship using

a co-occurrence score as a similarity measure. The results shows that members of the

same clusters are close together and that they cover more binding sites with the same

biological function.

3.1 Introduction

Identifying functional regions on proteins is essential for understanding biological mech-

anisms and for designing new drugs. Due to the accessibility to protein sequences on the

web, it is more effective to look for conserved segments from a set of functionally sim-

ilar protein sequences than to perform laborious and time-consuming experiments and
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computationally intensive modeling. The study of conserved functional regions relies

on the assumption that amino acids in functional regions are integral and thus undergo

fewer mutations throughout evolution than less functionally important amino acids [34].

Therefore, the functional regions of protein structures can be obtained from analyzing

protein sequences that have similar biological functions.

Multiple sequence alignment (MSA) [17, 18] is a traditional computational method which

is capable of aligning homologous protein sequences that are highly similar. However,

it is unable to discover functional regions in more divergent protein sequences. Conse-

quently, MSA is a global alignment method suitable for studying closely related proteins

but not proteins that have only region-wise, partially functional similarities [35]. It has

also been shown that finding the global optimal alignment is an NP-complete problem

[36]. Coupling analysis [37–39] is a method based on MSA that examines the substitu-

tion correlation between two aligned columns within the MSA. This study hypothesizes

that if two residues form a contact within a protein, then an amino acid substitution

at one position is expected to be compensated for by a substitution in another position

over the evolutionary time-scale. This observation suggests that co-occurring residues

on the same protein can provide insight into the protein’s structure. However, due to the

dependence on MSA and the complexity of the method, determining the underlying sta-

tistical model requires a large number of homologous non-redundant protein sequences.

Evolutionary tracing [34] is another method based on clustering alignments. The con-

sensus within and across each group is identified to allow the study of divergent residues

that are globally or functionally preserved in a protein family. Once again, evolution-

ary tracing is based on full sequence similarity requiring mutagenesis information for

clustering [40]. Hence, it is not effective for revealing local functionality. Both coupling

analysis and evolutionary tracing are based on examining pairwise amino acid correla-

tions from MSA which focuses on two identified sites and does not take into account

other sequence information.

In comparison to traditional methods, our algorithm finds and analyzes higher order

sequence patterns in conserved regions, improving the capacity to reveal cross pattern

association encompassing local and distant functionality. In our previous work, we in-

troduced Aligned Pattern Clusters (APCs) [6] to represent functional regions as an

alternative to position weight matrices [41]. Aligned Pattern Clusters are sequence pat-

terns with variations and conservation without assuming independence between residues

[6] at sites. Its strength lies in the retention of statistical significance along the amino

acids on a sequence and also the tracking of distribution of their occurrences across the

sequences. With this novel representation, we are now able to exploit the APC occur-

rences on a collection of sequences and study the co-occurrence between their patterns

on the same protein sequence.
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We hypothesize that co-occurring patterns reflect the joint functionality that are needed

for co-operative biological functions such as chemical bonds or binding sites. Thus,

we address the following two research questions: 1) given a set of homologous protein

sequences, how can frequently co-occurring patterns be efficiently discovered? 2) How

can the biological reasoning and significance of these co-occurrences be confirmed? To

test these hypotheses, we used our co-occurrence clustering algorithm to find highly co-

occurring patterns among a cluster of APCs and then studied their biological functions.

First, we collect homologous protein sequences from the protein databases Pfam [14] and

UniProt [42] as input. Next, we design an efficient algorithm based on our previous work

[6, 32] to find and represent the frequently co-occurring patterns. Finally, we verify our

results by comparing the three-dimensional distance between the co-occurring patterns

against the average distance between the regions spanned by the patterns. To confirm

the biological functions of the co-occurrences, we search the related scientific literature

to support the conceived role of these co-occurring patterns.

In view of the above mentioned computational results and biological observations ac-

complished in this chapter, the contributions of this study mirror the answers to the

research questions in two ways. First, we have established an algorithm that discovers

co-occurring functional regions that are statistically reliable, measurable, and efficient.

To our knowledge, this study is the first to identify the co-occurrence of patterns rather

than residues. Compared to existing algorithms used to study correlations in amino

acid residues, the novelty of our algorithm is that it does not require a large number

of homologous protein sequences to identify pattern co-occurrences. Secondly, we have

verified these co-occurrences by using the co-occurring patterns’ three-dimensional close-

ness and by searching biological literature for support, enriching our understanding of

the underlying mechanism. Novel co-occurrence relationships will provide new insight

for the biological community for use in their study on protein functionalities.

3.2 Methods

The methodology proposed in this paper combines the pattern discovery algorithm and

the APC algorithm presented in Chapter 2 and a new algorithm together to obtain the

Co-occurrence Cluster of Aligned Pattern Clusters (Co-occurrence Cluster) (Fig. 3.1).

In the third algorithm, Co-occurrence Clusters are obtained by clustering the APCs

discovered using spectral clustering [43] with a co-occurrence score adopted as a measure

of distance.

15



Chapter 3. Applying Co-occurrence APCs to Discover Interacting Regions In Protein
Families

Figure 3.1: The overall process of our methodology is represented by a pipeline
consisting of three algorithms. 0) the input is a set of sequences from the same protein
family; 1-2) are the pattern discovery algorithm and the APC algorithm discussed in
Chapter 2 and 3) the new Co-Occurrence Cluster algorithm, which cluster APCs by

their co-occurrence scores.

3.2.1 Clustering APCs to Co-occurrence Clusters

Co-existence of patterns in different locations of the same protein may indicate that

they are statistically significant and functionally related and important for the protein

family. In Co-occurrence Clusters, we first apply a spectral clustering algorithm to

cluster APCs using a co-occurrence score between APCs as the similarity measure. Let

the graph G = (V,E) be a relationship graph with APCs as vertices. Let each vertex

v be an APC, and let each weighted edge e be the co-occurrence for two APCs; the

edge weight is the co-occurrence score to be defined later between the two APCs. The

spectral clustering algorithm is used to obtain Co-occurrence Clusters based on the

co-occurrences of patterns between the APCs.

3.2.1.1 Co-occurrence score [3]

To tell how many patterns out of the total number of the discovered patterns co-occur in

two APCs, we need a co-occurrence score which will be used as the similarity measure for

clustering co-occurring APCs. “The co-occurrence score quantifies how often patterns

in two APCs appear together on the same sequence. The Jaccard index is adopted [1]:

J =
|C1

seq ∩ C2
seq|

|C1
seq ∪ C2

seq|
,
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where C1
seq = sequences that contain patterns from APC C1 and C2

seq = sequences that

contain patterns from APC C2.” [3]

The APC pairs are ranked by the co-occurrence score and listed in descending order.

When two or more APC pairs have the same score, the sequence count of the union of

the two APCs (|C1
seq ∪C2

seq|) is used as a secondary ranking criteria, i.e., the pair with a

higher union size indicates that it covers more sequences and, hence, should be ranked

higher.

3.2.1.2 Spectral clustering

For spectral clustering [43], an adjacency matrix W is first created and filled with the

co-occurrence scores between the APCs. Let W be an n by n matrix (n is the vertex

count in G), where W (i, j) is the adjacency weight between vertex vi and vj , i.e., the

co-occurrence score between vertex vi and vj . The following matrix was first constructed:

di =
∑
j

W (i, j).

D = diag(d1, ..., dn),

where D is an n by n diagonal matrix.

Next, using the adjacency matrix, a Laplacian matrix L is created, and L’s eigenvectors

are calculated. Using a random walk, construct the Laplacian matrix

Lrw = I −D−1W

where I is an n by n identity matrix. Find both the eigenvalues and their corresponding

eigenvectors for Lrw and sort the eigenvectors by the ascending order of their eigenvalues.

Finally, the eigenvectors are then used as positions for the APC vertices v, with the

weighted edges e being the Euclidean distance between v in the vertex space of G and

its neighbours. K-means clustering is applied to G, minimizing the Euclidean distance

of the eigenvectors between the vertices. Let k be the final cluster count, defined as

the count before the largest difference between consecutive eigenvalues [43]. We use the

first k eigenvectors for clustering. We construct a n by k matrix eig, where each column

corresponds to one of the first k eigenvector in vertical matrix form. Each row in eig

corresponds to an APC vector, with each vector having k values. The vector represents

the APC as a point in the k-dimensional space. As eig has a row count of n, there

are n APC vectors. Apply the k-means clustering algorithm on the n APC vectors,

minimizing the distances between the points within the clusters (Algorithm 1).
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Algorithm 1 Spectral clustering

Input: A set of APCs C, adjacency matrix W , and the final number of clusters
required by the final k-means clustering algorithm
Output: APC Clusters K1...Kk

for i = 1 to |C| do
di =

∑
j w(i, j)

end for
D = diag(d1, ..., dn)
Let I be a |C|x|C| identity matrix
Lrw = I −D−1W
Calculate the eigenvectors and their corresponding eigenvalues of Lrw

Sort the eigenvectors by their increasing eigenvalues
Take the first k eigenvectors and construct the matrix eig, where each column is an
eigenvector in its vertical matrix form
Let each row of eig represent an APC,
and let each column of eig a dimension
Construct a k-dimension graph Gk based on eig
Apply k-means clustering on Gk, minimizing the Euclidean distance between the
points within the clusters.
return {K1...Kk}

3.2.1.3 Comparison of clustering algorithms

Two other clustering algorithms were implemented to compare with spectral clustering:

that is, the k-means clustering and the hierarchical clustering.

A special variation of the k-means clustering algorithm called k-medoids [44] is used

in this paper. APCs are used to represent the centroids since calculating a centroid

with only co-occurrence scores between APCs is difficult. The medoids are initialized

to be the first APC for each connected component due to the small number of APCs

considered. During the clustering process, the medoids are updated by finding the APC

that maximizes the co-occurrence score between itself and all the other APCs in the

same cluster. Finally, to ensure that clustering provides the best possible results, five

clustering indicators are computed to determine the optimal final number of clusters,

i.e., optimum k, to be adopted for the k-medoids (Algorithm 2).

The hierarchical clustering algorithm uses a maximum spanning tree (MST) with min-

imal cut. First, an MST is built using Prim’s algorithm (Algorithm 3). Next, the

minimal weighted edge of the MST is cut to separate the vertices, which are APCs,

into two co-occurrence clusters. The second step is repeated until an optimal solution

is achieved, determined through different clustering indicators, such as the Dunn index

[45] (Algorithm 4).
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Algorithm 2 k-medoids clustering

Input: A set of APCs C, and the co-occurrence scores between all pairs of APCs J ,
final number of clusters the k-means clustering is k
Output: APC Clusters K1...Kk

Initialize centroids M1...Mk, where each M1 represent the center of APC Cluster Ki

Find number of components
Select first APC from each component as the centroid
for i = |components|+ 1 to k do

Identify the APC that forms the lowest co-occurrence score with known centroids
Assign this APC as a new centroid

end for
repeat
for all APC C ∈ C do

Assign C to closest centroid Mj such that C and Mj are from the same component
end for
for all clusterKi ∈ {K1...Kn} do

Update centroid Mi by selecting APC that maximizes co-occurrence within all
APCs in Ki

end for
until convergence
return {K1...Kk}

Algorithm 3 Maximum Spanning Tree (based on Prim’s Algorithm)

Input: A set of APCs C as vertices V , and the co-occurrence scores between all pairs
of APCs as edges E
Output: A set of |C| = |V | edges for the maximum spanning tree edges EM =
{e1, e2, ..., e|V |−|components|}
repeat

Add any edges e that connects to v to edge list,
making sure that the other vertices connected to that edge is not already seen
if edge list is not empty, then

get the maximum edge from list
Let the vertex that is connected by the maximum edge but currently not in MST
be the new v
Add the maximum edge to MST edge list
Add the vertex to the seen vertices list

else if edge list is empty then
Find a random vertex that is not seen yet in the seen vertices list to be the new
vertex

end if
until all vertices are seen
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Algorithm 4 Hierarchical Clustering

Input: A set of APCs C as vertices V , and the maximum spanning tree edges EM

Output: APC Clusters K1...Kk, where each K is an APC Cluster that contains a
set of APCs C
repeat

Compute clustering indicators for all MST edges
Sort the clustering indicators
Select the edge with the optimal cluster indicator
Cut the edge if the current cluster indicator is better than the previous cluster
indicator

until optimal clustering is reached: current cluster indicator is worse than the previous
cluster indicator

Runtime Comparison The runtimes to find the optimal solutions for the three

clustering algorithms are as follows: O(n4) for hierarchical clustering, O(n3) for spec-

tral clustering, and O(n3) for k-medoids clustering. During the edge-cutting phase for

hierarchical clustering the algorithm must evaluate all possible MST edges, a maximum

of n edges, with each edge taking O(n2). Since there are a maximum of n MST edges

to cut, the total running time is O(n4). K-medoids clustering takes O(n2) only if the

cluster count is given. However, the algorithm is run n times to compare and obtain the

optimal cluster count for the optimal clustering solution. Hence, the optimal solution

has a runtime of O(n3). In comparison, spectral clustering takes O(n3) even with clus-

ter count given, as the matrix multiplication that occurs when calculating the Laplacian

matrix takes O(n3). However, the matrix is calculated only once, the optimal cluster

count is obtained through the eigenvalues, and the algorithm uses the same that for the

k-medoids algorithm to find the optimal cluster. Hence, the total runtime for spectral

clustering is the same as k-medoids clustering, O(n3). Because of the quicker runtime,

spectral and k-means clustering are preferred over hierarchical clustering.

Nature of the Dataset Moreover, the spectral clustering algorithm is selected over

the k-means clustering algorithm used in [46] because of the nature of the data. Pfam

[14] sequences are built from multiple sequence alignments with the help of a hidden

Markov model; thus, the sequences have been pre-processed for correctness. UniProt

[42] sequences are collected from a string query search of the database, so the quality of

the sequences depends on the search terms. Therefore, the sequence quality of UniProt

is less consistent, making it unsuitable for clustering using the global centroid of k-means

since the low-quality sequences are heavily affected by outliers [47]. Closest neighbour

characteristic in the spectral clustering algorithm is beneficial in handling noisy data.

Therefore, this algorithm was selected to cluster co-occurring APCs.
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3.2.2 Verification by three-dimensional structure

To evaluate the importance of the APC regions discovered, we use the three-dimensional

distance between the protein segments corresponding to the APCs within the Co-

occurrence Cluster. The rationale for using the three-dimensional distance is that if

the APCs are close together in three-dimensional space then they will likely interact

with one another. It thus provides biophysical support that these functional regions are

of biological importance to the proteins in the protein family tested.

After applying co-occurrence clustering, we manually select the cluster that contains the

lowest average eigenvector distance as the highly connected Co-occurrence Cluster. We

relate these results to the corresponding three-dimensional protein structure from the

Protein Data Bank (PDB) [12] using Chimera [48], highlighting the regions where the

APCs, or parts of the APCs, appear. The distances between the APCs are calculated

as follows: the positions of each carbon alpha in each APC region is averaged, creating

an average centroid for each APC region. The Euclidean distance is then calculated

amongst all centroids. Finally, the APC distance is compared to the average pairwise

distance, which is the average Euclidean distance of all possible carbon alpha pairs in

the structure.

Using only the highly connected Co-occurrence Clusters and finding their biological

importance, we validate 1) that the co-occurrence score ranks important APC pairs

over the less important ones, 2) that co-occurrence clustering is able to separate the less

important APCs out and 3) that our algorithm can provide reasonably good results in

a timely manner, i.e. by not having to search through all APCs discovered.

3.3 Datasets

The first dataset selected for our experiment contains two different protein families from

UniProt, which are examined in subsequent detailed case studies. The first set is of

ubiquitin protein sequences, downloaded on August 9th, 2012, with the following filters

to obtain high quality sequences: having the name ubiquitin with a mnemonic starting

with UB; and not containing the words ribosomal, modifier, factor, protein, conjugate,

activating, or enzyme to remove other similar names. The second is of cytochrome c

protein sequences, downloaded on December 20, 2013, similarly with the filters: having

the name cytochrome c with the mnemonic CY*; not ending in ”ase” to prevent the

inclusion of oxidase or reductase; and not containing biogenesis or probability to remove

other similar names. Each sequence from UniProt has an organism name, which is next
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searched in UniProt Taxonomy to acquire the condensed taxonomy lineage. Finally, the

top kingdom name is extracted as the class label.

Next, our method was run on the two UniProt datasets. For the 70 ubiquitin input

sequences, the pattern-discovery step was executed with a minimal length of 5, a maxi-

mum length of 15, a minimum occurrence of 20, and a delta of 0.9 (for control of delta

closed pattern pruning). The maximum length restricted long (or high order) patterns

from being discovered in the highly conserved ubiquitin sequences. Aligned pattern

clustering was then executed with the following settings: Global Alignment with Ham-

ming Distance and heuristics conditions with a minimum consecutive column match of

3, a minimum conserved column of 1, and no relative position overlapping. For the 319

cytochrome c input sequences, the pattern discovery step was executed with a minimal

length of 5, a minimum occurrence of 40, and a delta of 0.9. The increase in the minimum

occurrence was due to the increase in the number of input sequences. Aligned pattern

clustering was then executed with the same settings as above. Lastly, the co-occurrence

score was computed, and the three clustering algorithms were run. For both datasets,

spectral clustering and k-medoids resulted in producing the same Co-occurrence Cluster.

The second dataset contains nine different protein families downloaded from Pfam Re-

lease 3.2 for a large-scale study of the three-dimensional structure of proteins. Pfam

was used due to its well curated and pre-processed data. The proteins are lipocalin

[Pfam: PF00061]; bacterial rhodopsins [Pfam: PF01036]; bacterial antenna complex

[Pfam: PF01036]; cytochrome c oxidase subunit I [Pfam: PF00115]; photosynthetic re-

action centre protein family [Pfam: PF00124]; leptin [Pfam: PF02024]; G-alpha subunit

[Pfam: PF00503]; protein kinase domain [Pfam: PF00069]; and tyrosine kinase [Pfam:

PF07714]. The pattern-discovery and the aligned pattern clustering steps were executed

with the same settings as above, except the minimum occurrence, which was adjusted

based on the number of sequences and their sequence similarity as listed in Pfam. Af-

ter clustering, we picked the Co-occurrence Cluster with the lowest average eigenvector

distance to be evaluated for the three-dimensional distance.

3.4 Experimental results and discussions

3.4.1 Proteins verified by three-dimensional structure

We applied our method to nine protein families, confirming that our algorithm is effective

at finding important regions on any protein family. Table 3.1 displays the Co-occurrence

Cluster of closely related APCs in the PDB structure of the related protein family. We

found that these APCs are close in Euclidean distance in the three-dimensional space.
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Table 3.1: Results from the nine protein families. Displays the Co-occurrence Cluster
with the lowest average eigenvector distance, and are used to verify the algorithm’s
effectiveness with a PDB structure. The shorter distance in the comparison is bolded.

* means that one or more APCs were not found.

Protein Name Pfam ID Co-occurrence Size PDB ID Average APC Average
Cluster of the of the Distance of Pairwise
Count Best Cluster Best Cluster the Best Cluster Distance

Lipocalin PF00061 6 4 2CZT 16.77 Å 19.26 Å
Bacterial rhodopsins PF01036 2 2 1JGJ 16.52 Å 22.51 Å
Bacterial antenna complex PF00556 4 5 1IJD 0 Å 19.92 Å
Cytochrome c oxidase sub-
unit I

PF00115 2 25 3OM3 26.78 Å* 30.00 Å

Photosynthetic reaction cen-
tre protein family

PF00124 2 7 1PSS 27.87 Å 30.19 Å

Leptin PF02024 2 14 1AX8 15.73 Å 18.37 Å
G-alpha subunit PF00503 3 8 4G5O 15.78 Å 27.45 Å
Protein kinase domain PF00069 2 2 3OZ6 15.32 Å 27.51 Å
Tyrosine kinase PF07714 2 8 4HW7 14.43 Å 24.99 Å

Of interest are the results from the bacterial antenna complex family [Pfam: PF00556],

where there is an average APC distance of 0 Å. The reason is that, despite having 5 APCs

in the maximum co-occurrence cluster, all APCs overlap with one another, creating one

long continuous region highlighted in blue (Figure 3.2). Furthermore, the highlighted

region covers positions 9 to 31 of the structure, and has only 46 amino acids, i.e., the

maximum co-occurrence cluster continuously covers close to half of the whole structure.

The figure also indicates that [Pfam: PF00556] might be highly conserved, exhibiting

only minor variations in its primary structure across different proteins in the family,

especially in the regions covered by the maximum co-occurrence cluster. Another result

where the maximum co-occurrence cluster covers most of the amino acids in the PDB

structure is Leptin [Pfam: PF02024, PDB: 1AX8], where only 14 amino acids are not

covered by the APCs in the maximum co-occurrence cluster.

All the APCs within the cluster in all the experiments in Table 3.1 were closer in distance

than the average pairwise distance, indicating a relation between co-occurring APCs and

their distance in three-dimensional structures. We were able to observe some character-

istics of the protein family, i.e., the conservation of its primary structure. Hence, our

algorithm is proven to discover important conserved regions for protein families.

3.4.2 Biological validation

In this section, we investigated the biological significance of Co-occurrence Clusters. Our

experimental results revealed the Co-occurrence Clusters of ubiquitin and cytochrome c.

Here we would like to study why co-occurring APCs are close to one another in spatial

distance despite being far from each other in the primary sequence. Our hypothesis is

that they need to form chemical bonding or co-operate in essential biological functions.
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Figure 3.2: Three-dimensional structure of bacterial antenna complex [PDB: 1IJD].
The set of all the patterns in the APCs in the Co-occurrence Clusterinspected are
all contained within one continuous highlighted blue region, indicating how the APCs

overlap with one another.

3.4.2.1 Ubiquitin case study

Ubiquitin (UBI) is a small (8.5kDa) protein that consists of a single polypeptide chain

of 76 amino acids [49]. It plays an important role in ubiquitination, which is a post

translational protein modification process where either a single ubiquitin or multiple

chains of ubiquitin are attached to a substrate protein. To form a chain, a ubiquitin

connects to another ubiquitin by binding the diglycine in its C-terminal tail to one of

the seven lysine amino acids of its linking partner.

Ubiquitination is widely used in regulating cellular signaling [50]. It does so by al-

lowing the attached ubiquitin in substrate proteins to be bound through proteins with

ubiquitin-binding domains (UBD) [50]. Either attaching a ubiquitin to a target protein

or connecting it to another ubiquitin regulated by the sequential activity of ubiquitin-

activating (E1), ubiquitin-conjugating (E2) and ubiquitin-ligating (E3) enzymes [50].

When the seven lysine amino acids were mapped to our APCs, they were all covered

(Table 3.2). According to the results of our co-occurrence clustering algorithm in Figure

3.3, the optimum number of cluster of the six APCs is two. The first cluster includes

APC 1, 2, 3, 4 and 5; the second cluster includes APC 6 only. Their biological significance

is discussed in Figure 3.4.

The APCs in the first cluster to co-occur for two reasons. First, each APC covers at

least one Lysine (K). The diglycine in the C-terminal tail, i.e., Gly(G)75 and Gly(G)76

(green shade), is also covered in APC 3. As discussed, Lysine (K) and the diglycine in

the C-terminal tail are both important for the formation of multiple ubiquitin chains.

Both APC 5 and APC 3 also cover important residues for facilitating the interaction of

ubiquitin with E1 enzymes [52]. Mutagenesis experiments demonstrated that the muta-

tion of Arg(R)42 or Arg(R)72 (red blocks) destabilizes the binding between Ubiquitin
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Table 3.2: Key residues covered by APC and their roles in the Co-occurrence Cluster
1 of ubiquitin

APC Residue(s) Role(s) Literature

1 K6, K11 Lys(K)6 and Lys(K)11 are used for forming ubiq-
uitin chain(s) in ubiquitination.

[49]

L8 Leu(8) facilitates the interaction between ubiqui-
tin and E1 enzymes.

[50, 51]

2 K11, K27 Lys(K)11 and Lys(K)27 are used for forming ubiq-
uitin chain(s) in ubiquitination.

[49]

L8 Leu(8) facilitates the interaction between ubiqui-
tin and E1 enzymes.

[50, 51]

3 K63 Lys(K)63 is used for forming ubiquitin chain(s) in
ubiquitination.

H68, V70 His(H)68 and Val(V)70 facilitate the binding be-
tween ubiquitin and ubiquitin-binding proteins.

[50, 51]

R72 Arg(R)72 facilitates the interaction between ubiq-
uitin and E1 enzymes.

[52]

G75,G76 Gly(G)75 and Gly(G)76 are used for forming
ubiquitin chain(s) in ubiquitination.

[49]

4 R42 Arg(R)42 facilitates the interaction between ubiq-
uitin and E1 enzymes.

[52]

I44 Ile(I) 44 is the binding site between ubiquitin and
the ubiquitin-binding proteins.

[50, 51]

K48 Lys(K)48 is used for forming ubiquitin chain(s)
in ubiquitination. It also facilitates the binding
between ubiquitin and ubiquitin-binding proteins.

[49–51]

5 K27,K29,K33 Lys(K)27, Lys(K)29 and Lys(K)33 are used for
forming ubiquitin chain(s) in ubiquitination.

[49]

R42 Arg(R)42 facilitates the interaction between ubiq-
uitin and E1 enzymes.

[52]

and E1 enzymes significantly, thus in turn, destroying the biological functions of ubiq-

uitin [52]. Second, all APCs except APC 5 cover the ubiquitin-binding residues. These

residues are important for the tight binding of ubiquitin with ubiquitin-binding proteins

[50]. Therefore, the APCs in the Co-occurrence Cluster 1 are due to both ubiquitination

and ubiquitin-binding.

There is only one APC, APC 6, in the second cluster (Figure 3.3) which has no co-

occurrence with other APCs. We also observed a certain degree of overlapping between

APC 6 and APC 5. We propose two reasons to explain why APC 6 is not merged with

APC 5 but exists alone in another cluster. First, the conserved amino acid in residue

24 of APC 6 and APC 5 is Asp(D)24 and Glu(E)24 (yellow shade), respectively. We

found that ubiquitin of Viridiplantae (plant kingdom) has mostly Glu(E)24, whereas

ubiquitin of Metazoa (animal kingdom) has mostly Asp(D)24 in our dataset, this site

is also well-known for differentiating human (containing Glu(E)24) ubiquitin from yeast

(containing Asp(D)24) ubiquitin [53]. Hence, APC 6 and APC 5 are not merged in this

study, because they cover patterns with different amino acids in different species.

Second, APC 6 does not include ubiquitination-related Arg(R)42 and covers the alpha

helix 1, from residues 23 to 34, more precisely than APC 5. Previous literature has
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Figure 3.3: Co-occurrence clusters of ubiquitin. General Features: a) the top of the
diagram is part of the HMM sequence profile of ubiquitin; b) the color shading blocks
with legends immediately below mark the important amino acids and segments forming
the important structure and function of the protein; c-d) the APCs discovered are
represented by arrays of aligned amino acids; the color shaded columns correspond to
the significant residues marked as in b); if the co-occurrences of patterns between APCs
are frequent, the co-occurrence APCs are linked by an edge with weight representing co-
occurrence score; treating APCs as vertices. A co-occurrence APC cluster is represented
by a weighted graph linking co-occurring APCs; the important functional regions of the
molecules as listed in Table 2 are highlighted in colored blocks specified by the legend.
Specific Features: Note that APC 5 and APC 6 are not linked by co-occurrence since
they belong to different taxonomical group and with different amino acids, Asp(D)24

and Glu(E)24, in the same column.

discovered that alpha helix 1 is an unconventional recognition site of ubiquitin-binding

proteins [51]. Experiments in the same study revealed that, even if Ile(I)44 and His(H)68

were mutated, a high affinity binding between protein CKS1 and ubiquitin would still

be identified, thereby proving that ubiquitin is unconventionally bound by CKS1 [51].

It should be noted that the conventional and unconventional ubiquitin-binding is not

mutually exclusive [51]. Hence, APC 5 in the first cluster and APC 6 in the second cluster

are not merged. Where APC 5 represents the scenario that either only conventional

ubiquitin-binding occurs or conventional and unconventional ubiquitin-binding co-occur,

APC 6 represents the scenario that only unconventional ubiquitin-binding occurs. Our

experimental results from ubiquitin and literature search give us very strong support for

the biological significance of the discovered Co-occurrence Cluster.
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Figure 3.4: Three-dimensional structures of ubiquitin [PDB: 1AAR, 2JF5, 1WR1].
The binding residues discussed in Table 3.2 and their functions are displayed. a) is the
ubiquitin chain linked by the Lys(K)48 in APC 4 to the diglycine, b) is the ubiquitin
chain linked by the Lys(K)63 in APC 4 to the diglycine, c) is the binding between dskp
binding ubiquitin and ubiquitin by Leu(L)8 of APC 2, Val(V)70 of APC 3, Ile44(I) and

Lys(K)48 of APC 4, and His(H)68 of APC 3.

3.4.2.2 Cytochrome c case study

Cytochrome c (cyt-c) is a small (12.4kDa), heme-containing protein that consists of ap-

proximately 104 amino acids [54]. It is an essential component of the electron transport

chain in the mitochondria. The heme group of cyt-c accepts electrons from the com-

plexes III (cytochrome b-c1 complex or cyt-bc1) and transfers electrons to the complexes

IV (cytochrome c oxidase or cyt-c1) [54].

According to the results of our co-occurrence clustering algorithm (Figure 3.5), the

optimum number of clusters of the 8 APCs is 2. The first cluster includes APCs 1 to

3; the second cluster includes APCs 4 to 8. Their biological significance is discussed as

below.

For the first cluster, we found that all the APCs covered residues that contributed

significantly to the binding of cyc-1 on cyc-bc1. This is crucial for electron transfer.
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Table 3.3: Key residues covered by APCs and their roles in Co-occurrence Cluster 1
of cytochrome c

APC Residue(s) Role(s) Literature

1 Lys25, Lys27 The binding sites of cytochrome c cytochrome
BC1 complex

[55–57]

2 Lys27 The binding sites of cytochrome c cytochrome
BC1 complex

[55–57]

3 Lys5, Lys7, Lys8 The binding sites of cytochrome c cytochrome
BC1 complex

[55–57]

Experiments have established the importance of Lys(K)8, Lys(K)27 and, to a lesser

extent, Lys(K)5, Lys(K)7, Lys(K)25 [55–57]. They are covered in the APCs in the first

cluster (Table 3.3). Therefore, these APCs co-occur to facilitate the binding of cyc-1 on

cyc-bc1.

For the second cluster, we found that all the APCs covered residues that were mostly

responsible for the stable axial ligand between cyc-t and the heme group (Figure 3.6),

which is the component that takes part in the redox reactions for the electron transfer

between cyt-c and other complexes. APC 4 covered Cys(C)14 [58, 59], Cys(C)17 [58, 59]

and His(H)18 [60, 61]. His(H)18 [60, 61] forms an axial ligand with the heme from the

proximal front. Cys(C)14 [58, 59] and Cys(C)17 [58, 59] enhance and maintain the axial

ligand between His18 and the heme. APC 5 covered Tyr(Y)67 [54, 62], Pro(P)71 [63],

and Pro(P)76 [64], Met(M)80 [61] and Phe(F)82 [65]. Met(M)80 [61] forms an axial

ligand with the heme from the distal side. Tyr(Y)67 [54, 62], Pro(P)71 [63], Pro(P)76

[64] stabilize and coordinate the axial ligand between Met(M)80 and the heme. Phe(F)82

[65] stabilizes the native heme environment. APC 6 covered Gly(G)41 [66], which holds

the axial ligand between Met(M)80 and the heme. APC 7 covered Asn(N)52 [67, 68],

which maintains a hydrogen bond with the heme to stabilize the environment.

Although APC 8 did not cover any residues that are directly related to the axial ligands

between cyt-c and the heme group, it covered residues that maintain the cyt-c structure.

Among the 38 intra-molecular hydrophobic interactions reported in [67], APC 8 covered

17 (44.7%). It also covered Leu(L)94 [69] and Tyr(Y)97 [69], where one of them is

required to provide a hydrophobic environment in order for cyt-c to function. Evidently,

the APCs in the co-occurrence cluster 2 form and maintain stable axial ligands with the

heme and also provide an appropriate structure and environment for cyt-c to function.

3.5 Summary

In this chapter, two research questions that were first posed in the introduction are ad-

dressed. We answer the first research question on discovering co-occurrences by creating
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Figure 3.5: Co-occurrence clusters of cytochrome c. General Features is same as
stated in Figure 3.3 c-d) Important functional regions as listed in Table 3 and 4, are
highlighted here in color blocks as specified by the legend; Specific Features: Amino
acids in Co-occurrence Cluster 1 facilitate the binding of cyc-1 on cyc-bc1 as listed in
Table 3 and most of the amino acids in Co-Occurrence Cluster 2 are responsible for the

stable axial ligand between cyc-t and the heme group.

Figure 3.6: Three-dimensional structure of cytochrome c [PDB: 1HRC]. a) The APCs
in Co-occurrence Cluster2 as listed in Table 3.4. b) The amino acids from APCs in
Co-occurrence Cluster2 mostly interact with the heme to stabilize the axial ligand, as

confirmed by biological literature listed in Table 3.4.

a novel algorithm that clusters APCs with a good proportion of co-occurring patterns

into an effective, statistical, and measurable Co-occurrence Clusters. We respond to

the second research question on the biological significance of these Co-occurrence Clus-

ters by their three-dimensional closeness and also by their biological functionality and

structural integrity. We confirm that the Co-occurrence Cluster with the lowest average
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Table 3.4: Key residues covered by APCs and their roles in Co-occurrence Cluster 2
of cytochrome c

APC Residue(s) Role(s) Literature

4 Cys(C)14 Cys(C) 14 enhances axial ligand strength between
His18 and the heme.

[58, 59]

Cys(C)17 Cys(C) 17 enhances axial ligand strength between
His18 and the heme.

[58, 59]

His(H)18 His(H)18 forms an axial ligand with the heme
from the proximal front.

[60, 61]

5 Tyr(Y)67 Tyr(Y)67, its hydroxyl group, forms a H-bond
with side chains of Met80 for structural stabiliza-
tion.

[54, 62]

Pro(P)71 Pro(P)71 helps coordinate the axial ligand be-
tween Met80 and the heme.

[63]

Pro(P)76 Pro(P)76 helps coordinate the axial ligand be-
tween Met80 and the heme.

[64]

Met(M)80 Met(M)80 forms an axial ligand with the heme
from the distal side.

[60, 61]

Phe(F)82 Phe(F)82 helps stabilize the native heme environ-
ment.

[65]

6 Gly(G)41 Gly(G)41 helps stabilize the axial ligand between
Met80 and the heme.

[66]

7 Asn(N)52 Asn(N)52 maintains a hydrogen bond with the
heme to stabilize the environment.

[67, 68]

8 Leu(L)94 One of Leu(L)94 or Tyr(Y)97 is required to pro-
vide a hydrophobic environment for the function
of cyt-c.

[69]

Tyr(Y)97 One of Leu(L)94 or Tyr(Y)97 is required to pro-
vide a hydrophobic environment for the function
of cyt-c.

[69]

co-occurrence score is also closer in three-dimensional distance than the average amino

acids in the three-dimensional structure. We also confirm that co-occurring APCs form

chemical bonds or co-operate in essential biological functions as supported in biological

literature. As a natural extension, we can use correlated amino acid variations to track

evolutionary divergence and extend the algorithms to discover consistence and deviance

of chemical properties. Since it is time-consuming to study the functional and struc-

tural sites for every target protein’s drug interaction in detail, the ability to discover

top-ranking Co-occurrence Clusters could also help to isolate the amino acids of biolog-

ical significance. Hence, our method will have great potential to impact drug discovery

and the biomedical community.
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Chapter 4

Using Co-occurrence APCs to

Predict Protein-Protein

Interactions

Expanding on the co-occurrence of APCs idea from Chapter 3, we apply the idea to a

widely researched bioinformatics problem: protein-protein interaction (PPI) prediction.

For this chapter, the APC relationship between proteins is calculated by the amount

of APC-PPI Score obtained from co-occurrence APC pairs from interacting proteins.

These APC relationships are then used as features to be applied to the given protein-

protein interaction data set to be learned using Random Forests [70]. The learned model

is then used to predict potential PPI based on their target pair’s protein sequences. The

algorithm was applied to a yeast dataset, with the dataset between training set and

testing set in 40 different cases. The results showed that our algorithm performed close

to the state of the art algorithm, while providing highly interpretable results, and had

higher prediction performance than PIPE.

4.1 Introduction

4.1.1 Background

Protein-protein interaction (PPI) is important for various biological processes and func-

tions in living cells such as metabolic cycles, DNA transcription and replication, and

signaling cascades [71]. Predicting PPI is thus critical for better understanding the

molecular mechanisms inside the cell [71], particularly useful for discovering unknown

functions of a protein [72]. Following [4], we refer to a PPI as an interaction that brings
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two different proteins A and B into direct physical contact, i.e. heterodimeric inter-

actions. In contrast, most homodimeric interactions, in which the interacting proteins

are identical, are for maintaining the stability of the interacting complex but not for

regulating cellular processes [73].

4.1.2 Literature Review

A number of experimental techniques have been developed for systematic and large-scale

prediction of PPIs but they are costly, labor-intensive and time-consuming [74]. Thus,

existing PPI data obtained by these methods covers only a small fraction of the complete

PPI networks [75]. Moreover, these experimental methods usually suffer from high rates

of both false positive and false negative predictions [76]. Hence, developing effective

and reliable computational methods to facilitate prediction of PPIs is of fundamental

importance [29]. Existing computational methods for PPI prediction can be classified

according to the input data. Sequence-based methods are becoming popular, since

sequence data is more readily available nowadays [72].

PIPE [23] / PIPE2 [24, 25] are well-established sequence-based methods, where PIPE2

is a faster version of PIPE. Given a protein A, a protein B and a database of positive

PPIs, PIPE simply counts how frequently all fixed-length protein sequence segments in

Proteins A and B co-occur in the database. For example, all combinations of 20-mers

between them are first enumerated using a sliding window with a width of 20 amino

acids. Then, the co-occurrence of each combination, e.g. MGIRRLVSVITRPIINKVNS

from Protein A and GPEAIILTGTFDDWKGTLPM from Protein B, is counted in the

database. The sum of all counts is obtained. If the sum is greater than or equal to a

threshold, the algorithm then predicts that protein A and B would interact. However, in

spite of the satisfactory prediction performance, there is ample room for improvement.

The key drawback of PIPE/PIPE2 is their use of a fixed-window of 20 amino acids.

This is biologically unrealistic since functional regions such as the Short Linear Motifs

(SLiMs [77]) have variable length from 3 to 15 amino acids [77]), mostly less than 10

amino acids [78].

Another well-established sequence-based method involves the use of Support Vector

Machine (SVM) with a Pairwise String Kernel [31]. They encode a PPI pair into a

feature vector obtained from the co-occurrences of the k-mers (sequences of k residues)

used for training the SVM to predict if a protein pair can interact. For example, assume

k = 3, a selected feature could be the number of counts of how often the 3-mers, say

WTG and LGA co-occur in a protein pair. Since all possible 3-mers are considered,

the feature space could be as large as 203 x 203 (i.e. 64 millions) [79]. With an SVM,
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even with such a high dimensionality, by using the kernel trick, neither computing nor

storing the feature vector is needed. Thus, since no feature vectors are computed, in

spite of achieving satisfactory prediction performance, it is hard to use the SVM results

to reveal or interpret why the feature space leads to its good performance. Also, since

the feature space is hardly interpretable, not much biological knowledge can be gained.

Hence, to overcome this hurdle encountered when using an SVM is a key motivation

of our proposed method. In WeMine-P2P, we utilize the local functionally conserved

patterns [33, 80] and their co-occurring pattern clusters [81, 81] to obtain biologically

realistic and interpretable features that are flexible in pattern length allowing variants.

Experiments showed that our prediction results based on these features are comparable

to those achieved by the SVM approaches, while being interpretable.

Motivated by the popular acceptance of sequence-based methods and realizing their

aforementioned drawbacks, the objective of this study is to develop a new sequence-based

prediction method that is (1) based on biologically interpretable discriminative features,

(2) more biologically realistic such as allowing variable lengths and variations in the

functional regions such as APCs, and (3) producing satisfactory prediction performance

between protein sequences. In this study, we propose a new algorithm known as WeMine-

P2P to achieve these objectives.

4.2 Method

We make use of our pattern search and integration strategies to discover and locate the

“what” and “where” of the conserved regions, using them as discriminative features to

construct the PPI classifier, as illustrated in Fig 4.1.

4.2.1 Input: PPI Database.

The input dataset, denoted PPI Database (PPI-DB), includes positive and negative

PPI pairs, a pair of protein sequences A positive PPI pair is defined as a pair of protein

sequences that can interact with each other, whereas a negative PPI pair is defined as a

pair of protein sequences that cannot interact with each other.

The PPI-DB, in addition to the protein sequences as defined in Chapter 2, is use to

train a predictive model to indicate if a protein pair would interact. The steps to train

and test a predictive model are as follows:
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APC1-APC1 APC1-APC2 APC1-APC3 .  .  . APC3-APC3 APC4-APC1 .  .  . Class

P117 - P227 0.50 1.00 0.50 .  .  . 0.00 0.25 .  .  . +

P337 - P225 0.50 1.00 0.50 .  .  . 0.00 0.49 .  .  . +

P231 - P524 0.00 0.00 0.50 .  .  . 1.00 0.57 .  .  . -

.  .  . .  .  . .  .  . .  .  . .  .  . .  .  . .  .  . .  .  .

Step 4: Construct a PPI matrix by matching the co-occurring APC pairs (cAPC 
pairs) to the PPI pairs in the PPI-DB and score the matching
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Figure 4.1: WeMine-P2P: a PPI Predictor. The input dataset, denoted the PPI
Database (PPI-DB), consists of a set of protein sequences, positive and negative PPI
pairs. Each protein sequence has a unique ID, e.g. P117, P227...etc. For illustration,
only some segments on a protein sequence is shown. To train a predictive model,
positive and negative protein-protein interaction pairs are labeled by “+” and “- ”
labels respectively (Step 1). For extracting features, APCs are obtained from PPI-DB
using WeMine Aligned Pattern Clustering algorithm (Step 2). All possible pairwise
combination of APCs are then enumerated as co-occurring APC pairs (cAPC pairs)
(Step 3). To construct a PPI matrix, cAPC pairs are then matched to the PPI pairs
in the PPI-DB and the matching is scored (Step 4). A predictive model is trained on
the PPI matrix, where each of its rows is a feature vector (Step 5). Any protein pair
can be turned into a feature vector by computing the APC-PPI Score of all extracted
cAPC pairs to itself. The feature vector can then be inputted to the trained model to

output the classification (Step 6).

4.2.2 Step 1: Label PPI pairs based on PPI-DB.

We label the positive and negative PPI pairs provided by PPI-DB as “+” class and

“-” class respectively (Fig 4.1). This helps to form a supervised-learning based training

set, in which a sample is a protein pair either in “+” or “-” class. Formally, we let

B = S × S = {B1,1, B1,2, ..., B|S|,|S|}, where each protein pair Bx,y is composed of two

protein sequences Sx and Sy such that Bx,y = (Sx × Sy).
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4.2.3 Step 2: Obtain Aligned Pattern Clusters from PPI-DB.

The protein sequences from PPI-DB are then used to obtain APCs, using the algorithms

defined in Chapter 2.

4.2.4 Step 3: Enumerate all possible cAPC pair.

We enumerate all possible pairs of APCs and call a pair of APC as a co-occurring Aligned

Pattern Cluster pair (cAPC pair) (Fig 4.1). We define a set of cAPC pairs as A = C×C
= {A1,1, A1,2, ..., A|C|,|C|}, where there are in total |C|× |C| = N number of cAPC pairs.

Each cAPC pair Ai,j is composed of two APCs Ci and Cj such that Ai,j is the Cartesian

product (Ci×Cj). These cAPC pairs would be features extracted from PPI-DB on the

fly to describe PPI pairs.

4.2.5 Step 4: Construct a Protein-Protein Interaction Matrix.

The PPI matrix M consists of rows of sample protein pair Bx,y and columns of feature

cAPC pair Ai,j with the last column being the class label (Fig 4.1). Each cell of the PPI

matrix M(Ai,j , Bx,y) has a value (between 0 and 1 inclusively) indicating the strength

of occurrence of a cAPC pair Ai,j on the protein pair Bx,y. APC-PPI Score is devised

to determine the value. It ranges from 0 and 1 inclusively, and builds upon two other

scores: the APCmatchingSegment Score and the APCoccurring Score.

4.2.5.1 APCmatchingSegment Score

We designed Algorithm 5 to match approximately an APC C, or more precisely the

patterns in the APC, to a sequence segment E of the same length. We check if each

character in the segment occurs in the APC column of the same index. The APCmatch-

ingSegment Score is the sum of the total number of matches (in the segment) normalized

by the length of the segment, as exemplified in Figure 4.2.

Algorithm 5 APCmatchingSegment Score

Input: APC C, Sequence segment seg
Output: Value in range [0 1]
for character ci in seg do

Add match count if ci is found in σ1i σ
2
i ... σmi of C { i: column index; m: number

of rows in APC C}
end for
return match count / |seg|
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Figure 4.2: An example on how the APCmatchingSegment Score is calculated for a
segment with 5 characters and an APC with 2 rows.

4.2.5.2 APCoccurring Score

We designed Algorithm 6 to output a score to represent the strength of occurrence of an

APC C on a protein sequence S. We use a sliding window of the APC length over the

sequence and compute an APCmatchingSegment Score for all segments (at an amount

of |S| − |C| + 1) of segments. The maximum APCmatchingSegment Score is chosen as

the APCoccurring Score.

Algorithm 6 APCoccurring Score

Input: APC C, Protein sequence S
Output: Value in range [0 1]
for i = 1 to |S| − |C|+ 1 do

Find APCmatchingSegment score of S[i, i+ |C|] and C
end for
return Maximum APCmatchingSegment score

4.2.5.3 APC-PPI Score

The APC-PPI Score is obtained from Algorithm 7 to measure the strength of occurrence

of a cAPC pair on a PPI pair. It first calculates two APCoccurring Scores for each of

the two possible APC-Protein combinations. Then the average of the APCoccurring

Scores in each APC-Protein combination is calculated. Then, each of the two APC-

Protein combinations is associated with a score. The APC-PPI Score is the maximum

one among those two scores.

Algorithm 7 APC-PPI Score

Input: cAPC pair A1,2, with APCs C1 and C2, and a PPI pair B1,2, with Protein
sequences S1 and S2.
Output: Value in range [0 1]
Let Score1 = Average of APCoccurring Score between (C1,S1) and (C2,S1)
Let Score2 = Average of APCoccurring Score between (C1,S2) and (C2,S2)
return Max of Score1 and Score2
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4.2.6 Step 5: Train a predictive model based on the PPI Matrix.

We train a predictive model, specifically Random Forest [70], based on the constructed

PPI matrix. Random forest is an ensemble learning method. In this study, we mainly

use it for binary classification, i.e. to predict if a protein pair is a positive or negative PPI

pair. It operates by constructing a number of decision trees in training, then outputting

the class label by voting, i.e. the mode of individual trees. We choose Random Forest

as our predictive model because 1) it runs efficiently on large training sets and is easily

parallelized [70]; 2) it can handle lots of input variables without variable deletion [70]; 3)

it seldom overfits the training set [70]. We adopt the machine learning package WEKA

3.7 [2] in training the Random Forest predictive model. It supports outputting the

prediction probability in addition to the class label.

4.2.7 Step 6: Predict the testing protein pairs.

Given a testing protein pair, we first transform it into a feature vector by computing the

APC-PPI Score of all extracted cAPC pairs to it. When the feature vector is constructed,

we then input it to the predictive model to obtain a class label, and also the probability

of the prediction (supported by WEKA [2]).

4.2.8 Feature analysis: cAPC pair Selection.

To analyze the features, we have developed a score to measure how discriminative a

cAPC pairs column, Ai,j , in the PPI matrix is. The higher the score the cAPC pair could

obtain, the more likely that it would co-occur in positive PPI pair but less in negative

PPI pair. This score is built upon the APC-PPI Score but needs to be normalized to

the number of PPI pairs (positive or negative) in the PPI matrix. We first define

tscore(Ai,j , Bx,y) =


score(Ai,j ,Bx,y)

posPPI , if +ve PPI pair,

− score(Ai,j ,Bx,y)
negPPI , if -ve PPI pair,

(4.1)

where score(Ai,j , Bx,y) is the APC-PPI Score, posPPI is the number of positive PPI

pair, and negPPI is the number of negative PPI pair. The tscore(Ai,j , Bx,y) that relate

to a cAPC pair Ai,j is summed among all PPI pairs in B. We define

hscore(Ai,j) =
∑

∀Bx,y∈B
tscore(Ai,j , Bx,y) (4.2)
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We could then use hscore to rank the cAPC pairs.

4.3 Materials

Forty independent Yeast Random datasets were downloaded from [4] at http://www.

marcottelab.org/differentialGeneralization. The procedure to obtain these 40

datasets is described below. Yeast Protein-Protein Interaction (PPI) data (“Saccha-

romyces cerevisiae-20100304.txt”) containing the protein sequences and the positive PPI

pairs was acquired from the protein interaction network analysis platform [82]. Further

pre-processing was applied to the proteins therein. First, the proteins were clustered

using CD-HIT2 [83] with the requirement that they shared sequence identity less than

40%. Second, the proteins with less than 50 amino acids as well as homo-dimeric inter-

actions were also removed. In total, 6806 Yeast protein sequences remained after the

pre-processing.

It is shown by [4] that predictive models perform much better for test pairs that share

components with the training set than for those that do not. Traditional cross-validation,

yet, overlooked this issue [4]. Hence, to prepare a training set with both positive and

negative PPI pairs, a specific resampling process was conducted by [4] on the 6806 Yeast

protein sequences to obtain 40 independent datasets. In each dataset, there are about

16000 PPI pairs for training and about 4000 PPI pairs (including C1, C2 and C3) for

testing. It should be noted that the number of positive and negative PPIs is in equal

amount. A simplified example dataset with training set and testing set C1, C2 and C3

is illustrated in Fig 4.3 with proteins existing in the training dataset in green and novel

proteins not from the training dataset in red. The required generalization ability from

the classifier increases with the number of novel protein sequences from C1 to C3.

4.4 Results and Analysis

4.4.1 Experimental Design and Parameter Setting

As mentioned in Section 4.3 Materials, we obtained in total 40 independent datasets

provided by [4]. Each dataset was partitioned into a training set and a testing set. In

our experiment, we first extracted features (Step 1, Step 2) from the training set, then

used the features to construct PPI matrix (Step 3, Step 4) and trained a predictive model

on the PPI matrix. In Step 1, we used WeMine Aligned Pattern Clustering algorithm

[33, 80] to obtain APCs with length varying from 5 to 10 amino acids inclusively with the
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Training set:
P01 – P02, +
P01 – P03, +
P07 – P08, +
P09 – P10, +
P01 – P07, -
P02 – P09, -
P03 – P07, -
P03 – P10, -

Testing set C1 
P01 – P10, +
P08 – P09, -

Testing set C2 
P01 – P15, +
P08 – P19, -

Testing set C3 
P11 – P15, +
P13 – P19, -

A simplified example dataset

Figure 4.3: A simplified dataset example with a training set and a testing set with
three distinct classes as defined in [4]. Each row is a pair of protein sequences with
a class label. “+” means positive interactions and “-” means negative interactions.
The positive PPI pairs are experimentally validated while the negative PPI pairs are
sampled from the proteins within the same set that are not known to interact [84].
Proteins existing in the training dataset are in green and novel proteins not from the
training dataset are in red. For example, in the training set, P01-P02 and P07-P08 are
positive PPI pairs but P01-P07 is a negative PPI pair. All protein pairs in the testing
sets are not found in the training set. However, all the protein sequences in C1 are in
the training set, while in C2 only some protein sequences are in the training set, and

in C3 no protein sequences are in the training set.

minimum support of 6, and the clustering threshold of 0.1. Other WeMine parameters

remain default [33, 80]. We also trained 3000 trees in the Random Forest in Step 5 using

Weka 3.7 [2]. Other Weka 3.7 parameters remain default [2]. We then transformed every

PPI pair in the testing set into a feature vector (Step 6) and applied the trained model

on it to output a class label and a score. We evaluated the predictive performance by

computing the Area Under Curve (AUC) following [4]. We repeated the same procedure

for all 40 independent datasets and computed the average AUC for comparison with

Methods 1-7 in [4].

4.4.2 Comparison to PIPE2

To illustrate the improvement made by WeMine-P2P on the use of co-occurring sequence

segments, we compared the average AUC with those obtained by PIPE2, provided by

[4]. Recall that PIPE2 [24, 25] uses the short amino acid sequences (fixed at length of 20)

that co-occur frequently in given positive PPI pairs to make predictions on a testing PPI

pair. As shown in Table 4.1, our results demonstrate that WeMine-P2P achieves better

performance in all three testing sets comparing to PIPE2, indicating that WeMine-P2P

outperformed PIPE2 in this experiment. WeMine-P2P is novel in the sense that 1) the

length of sequence patterns is allowed to vary, coping with inherent functional association

in the form of statistically significant patterns; 2) sequence patterns are clustered and

aligned as Aligned Pattern Clusters (APCs) to relate to inherent functional conservation
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Table 4.1: Comparing PIPE2 and WeMine-P2P on the average Area Under Curve
among 40 independent datasets

Testing set C1 Testing set C2 Testing set C3

Method 6 (PIPE2) 0.75 0.59 0.52
WeMine-P2P 0.79 0.61 0.58

Table 4.2: Comparing SVM-based methods and WeMine-P2P on the average Area
Curve Cover among 40 independent datasets

Testing set C1 Testing set C2 Testing set C3

Method 1 [26, 27] 0.82 0.61 0.58
Method 2 [26, 27] 0.84 0.60 0.59
Method 3 [29] 0.61 0.53 0.50
Method 4 [30] 0.76 0.57 0.54
Method 5 [30] 0.80 0.58 0.55
Method 7 [31] 0.58 0.54 0.52
WeMine-P2P 0.79 0.61 0.58

and variations; 3) nonlinear predictive models can then be trained with the feature

vectors. Since WeMine-P2P has overcome the drawbacks of PIPE2, it does outperform

it in the experiment.

4.4.3 Comparison to SVM-based Methods

To further illustrate the strength of WeMine-P2P, we compared its average AUC to the

SVM-based methods that are well-known for achieving the state-of-the-art predictive

performances. The average AUC of SVM-based methods were obtained in [4]. As shown

in Table 4.2, WeMine-P2P achieved comparable results, particularly for the testing sets

C2 and C3, in which some testing protein sequences in C2 and all in C3 are new and not

found in the training set (Fig. 4.3). (For details please refer to Section 4.3 Materials.)

This illustrates that WeMine-P2P has similar predictive power comparing to SVM-

based methods for novel testing protein sequences. We have to point out that while

assuming the pattern length k = 3, the feature dimension of SVM-based methods with

String Kernel [26, 27], though not computed nor stored, can be as large as 203 × 203 =

64,000,000. In WeMine-P2P, the feature dimension is only around 50,000, while allowing

the variation of residues with the pattern length varying from 5 to 10. It is a potential

reduction of 1280x in feature dimension. Also, while the feature vector is fixed in SVM-

based methods, WeMine-P2P could extract features from the input data on the fly,

allowing them to be biologically interpretable as described in the next section. Note

cAPC pair that Methods 5 and 7 do not use SVM directly but are variants of SVM-

based methods [4].
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Table 4.3: The top 10 cAPC pairs in hscore

Rank 1st APC ID 2nd APC ID hscore

1 1465525 9692312 0.018337
2 1465525 9698509 0.018083
3 1465525 1465525 0.018030
4 1465525 9487593 0.017986
5 1465525 9728806 0.017978
6 1465525 8234623 0.017748
7 1465525 9590335 0.017430
8 1465525 9658538 0.017391
9 8234623 9658538 0.017231
10 9642970 9658538 0.017229

Table 4.4: The APCs in the top 10 cAPC pairs

APC ID APC in Regular Expression

1465525 [AQ]QAQ[VA]
9692312 [GADSNEITV][VSANDGELK][EGDIQPLFNTS]EE[NTASGQVLRKID][DL

GEIKANQTSVRYF][DRKA]
9698509 [KDEVIL][EGLSKNV]E[VKELQRIAF]K[QREKTS][KQED]
9487593 [KIEALNV][KDENIA]E[LNSTIVGQRADK]E[QEK][LAQ]
9728806 [IEDNLSFG][TIDLNSEFGKQ][LIKFTDEVR]DE[ANSIDFE][TDVSILKAY

EQN][IAKLEDSQ][MD]
8234623 E[GLQTNKDSIVRAE]EEE[DE][GKQISTNRAL]E
9590335 [KSE][INE]VD[GLADKE][LD]
9658538 [NL][DSEV]E[GVKDE]E[ISGVDKE]EE
9642970 [RKE][KDIR][RAEKD]RK[LASE][ASK]K

4.4.4 Analysis of the discriminative features

We also investigate the discriminative features discovered by WeMine-P2P. We focus our

analysis on the training data in the independent dataset (ID = 11). We adopted the

hscore defined in Section 4.2. Methodology in order to compute a feature score (within

-1 and 1 inclusively) for each feature (i.e. cAPC pair). The higher the score, the more

likely the cAPC pair co-occur in positive PPI and less likely they co-occur in negative

PPI. The features are ranked from the highest to lowest. The top 10 cAPC pairs are

shown in Table 4.3 and their corresponding APCs are shown in Table 4.4.

We observed that 9 out of the top 10 APC pairs include an APC likely to represent a

segment in the compositional bias region. For example, “AMAMAAMAMAMA” is a

compositional bias region in which “A” and “M” are enriched. According to [85], com-

positional bias region is composed of amino acids that have locally shifted frequencies.

Likely compositional bias region within the top-10 APCs are APC 1465525 (enriched

for “A” and “Q”), APCs 9487593, 9692312, 8234623, 9658538 (enriched for “E”), APC

9642970 (enriched for “K” and “R”), and APC 9698509 (enriched for “K” and “E”), and
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APC 9728806 (enriched for “D” and “E”). These enriched regions can play important

roles in PPI [86].

4.5 Discussion and Summary

Protein-Protein Interaction (PPI) has been studied for years but discovering new PPIs

remains challenging. Different types of biochemical experiments and computational

methods have been proposed but each of them has their own limitations. Sequence-

based machine learning methods are becoming more and more popular because they

are readily applicable and achieve satisfactory performance. The approach of this the-

sis is not only able to produce quality predictive results but also to discover deeper

statistical and functional knowledge in PPIs. It could analyze the interpretable dis-

criminative features while existing methods could hardly produce both in accurate and

biologically interpretable results as WeMine-P2P does. Furthermore, existing meth-

ods adopt features that are not biologically realistic such as fixing the pattern length

and using exact patterns. However, WeMine-P2P could autonomously determine them

within the discovered APCs. The technical contribution of this work is to furnish a new

sequence-based method that overcomes these drawbacks while retaining the predictive

performance. Since no prior information on PPI has been incorporated, WeMine-P2P is

potentially extendable to other biosequence applications such as predicting Protein-DNA

interactions [81] in the future.
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Conclusions

Understanding the characteristics of proteins is of great importance because of the many

important functions that proteins have in living organisms. In addition, due to the dras-

tic reduction of biosequencing cost and time, there is a large influx of protein sequences

that can be analyzed upon for understanding of more about the underlying proteins.

However, wet laboratory experiments are both labour intensive and time consuming.

Hence, computational approaches are necessary to play an important role in analyzing

protein sequences. This thesis is built on top of the success of Aligned Pattern Clustering

(APCL), to further analyze protein sequences. Two algorithms were created based on

the idea of co-occurrence of APCs to solve two important problems. The first algorithm

focuses on finding and grouping functional regions of the same protein. It shows positive

results in finding clusters of regions (APCs) that are either in close contact in three-

dimensional structures (implying a possible interaction between the regions) or are shown

to be co-operative in biological functions based on biological literature. The second al-

gorithm focused on improving the current performance in predicting protein-protein

interactions. After comparisons, the second algorithm displayed a similar performance

with the state of the art methods for protein-protein interaction prediction (Table 4.2),

and with more interpretable results. Hence, both algorithms provided positive results

in its usefulness for analyzing protein sequences.

Future directions on the development of two algorithms includes continual refinement

on the algorithms with the goal of their use in the field. In particular, our WeMine-P2P

is potentially useful in drug industries such as drug target discovery with its protein-

protein interaction prediction ability. The program can help to find new drugs, to be

specific, the inhibitors for protein-protein interactions using the faster and more com-

prehensive search and predicting capability of WeMine-P2P. Furthermore, with inter-

pretable details, the program can help drug companies gain further insight into PPI in
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greater detail, giving researchers vastly more information to create drugs for fighting

maligned proteins. While our current program is not ready for industrial use currently

and demands further refinements, the results from this thesis have shown a great hope

in reaching that goal.
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and Sampsa Hautaniemi. Integrated network analysis platform for protein-protein

interactions. Nature methods, 6(1):75–77, 2009.

[83] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and compar-

ing large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659,

2006.

[84] Yungki Park and Edward M Marcotte. Revisiting the negative example sampling

problem for predicting protein–protein interactions. Bioinformatics, 27(21):3024–

3028, 2011.

[85] Kirill S Antonets and Anton A Nizhnikov. sarp: A novel algorithm to assess com-

positional biases in protein sequences. Evolutionary bioinformatics online, 9:263,

2013.

[86] Vladimir N Uversky and A Keith Dunker. Understanding protein non-folding.

Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(6):1231–1264,

2010.

52


	Declaration of Authorship
	Statement of Contributions
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Thesis Contributions
	1.1.1 Using Co-occurrence APCs to Reveal Interacting Regions within Protein Families
	1.1.2 Using Co-occurrence APCs to Predict Protein-Protein Interactions

	1.2 Outline

	2 Background
	2.1 Biological Overview
	2.1.1 Proteins
	2.1.2 Amino Acids
	2.1.3 Protein Structure
	2.1.4 Protein Families
	2.1.5 Protein Databases
	2.1.6 Protein Binding Sites and Protein-Protein Interactions

	2.2 Protein Sequence Analysis
	2.3 Aligned Pattern Clusters
	2.3.1 Input data
	2.3.2 Pattern discovery lee2013confirming
	2.3.3 Aligned Pattern Clustering lee2013confirming

	2.4 Motivations and Objectives

	3 Applying Co-occurrence APCs to Discover Interacting Regions within a Protein in Protein Families
	3.1 Introduction
	3.2 Methods
	3.2.1 Clustering APCs to Co-occurrence Clusters
	3.2.1.1 Co-occurrence score lee2013confirming
	3.2.1.2 Spectral clustering
	3.2.1.3 Comparison of clustering algorithms
	Runtime Comparison
	Nature of the Dataset


	3.2.2 Verification by three-dimensional structure

	3.3 Datasets
	3.4 Experimental results and discussions
	3.4.1 Proteins verified by three-dimensional structure
	3.4.2 Biological validation
	3.4.2.1 Ubiquitin case study
	3.4.2.2 Cytochrome c case study


	3.5 Summary

	4 Using Co-occurrence APCs to Predict Protein-Protein Interactions
	4.1 Introduction
	4.1.1 Background
	4.1.2 Literature Review

	4.2 Method
	4.2.1 Input: PPI Database.
	4.2.2 Step 1: Label PPI pairs based on PPI-DB.
	4.2.3 Step 2: Obtain Aligned Pattern Clusters from PPI-DB.
	4.2.4 Step 3: Enumerate all possible cAPC pair. 
	4.2.5 Step 4: Construct a Protein-Protein Interaction Matrix.
	4.2.5.1 APCmatchingSegment Score
	4.2.5.2 APCoccurring Score
	4.2.5.3 APC-PPI Score

	4.2.6 Step 5: Train a predictive model based on the PPI Matrix. 
	4.2.7 Step 6: Predict the testing protein pairs. 
	4.2.8 Feature analysis: cAPC pair Selection.

	4.3 Materials
	4.4 Results and Analysis
	4.4.1 Experimental Design and Parameter Setting
	4.4.2 Comparison to PIPE2
	4.4.3 Comparison to SVM-based Methods
	4.4.4 Analysis of the discriminative features

	4.5 Discussion and Summary

	5 Conclusions
	Bibliography

