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Abstract

In the past few decades, quantum computation has become an active area of research
due to prospects to execute high-efficiency quantum algorithms. Quantum algorithms
promise to accelerate many practical computation problems, but they can not be managed
on classical computers. While a vast amount of time and effort has been invested into
this field, executing a quantum algorithm is still a difficult task. One major obstacle is
decoherence, which can be induced by the environment. To better protect information
against noises, designs for a quantum computer have quickly improved. However, many
new designs lack systematic analysis.

In the first part of the thesis, we investigate a type of superconducting-circuit-based
qubit design proposed recently. The qubit, inspired by the current-mirror effect, is called
the “zero-pi qubit”. In Chapter 2, we derived an approximated model through concrete
mathematical calculations and simulations of the zero-pi qubit. The model is concise
and accurately describes the qubit system. Based on the model, we further estimate the
decoherence time of the qubit. The dephasing time due to the flux noise and the charge
noise exceed 40 s, and the relaxation process is well-protected against flux noise and charge
noise.

In the second part of the thesis, Chapter 3, we explore the qubit control in the strong
driving regime. Driving a qubit with a strong signal is an approach to shorten the oper-
ation time, thus suppressing the influence of the decoherence. We achieve strong driving
condition experimentally and observe complicated qubit dynamics, which is not predicted
by any conventional model. We then propose a model based on Floquet theory which
accurately describes the dynamics of the qubit.
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Chapter 1

Introduction

The development of the computer brought great changes to our lives in the 20th century.
The massive capability of information processing and storage enabled by computers saves
enormous time. The development of powerful computation also adds new capabilities to
modern science and aids the development of high-end technologies. The computer has been
improved at an exponential speed for more than a half century after its birth [1], but the
demand for faster computation is continuously growing, and an alternate path has been
started towards more powerful computation—quantum computers.

Before we begin the discussion on quantum computers, we will first introduce a few
basic ideas about problem-solving. When we have a problem, we have an idea of its
difficulty, which can be quantified by the knowledge and the time we need in finding the
solution. A similar concept holds for problems for computers, where researchers use the
term “complexity” instead of “difficulty”. The complexity of a problem is quantified in
terms of the time and resources required to solve the problem, and it scales with the
problem size. For a certain set of the problems, the complexity scales exponentially with
the problem size with best known algorithms run on classical computers. When the problem
size grows, the complexity increases so fast that no classical computer can solve it. The
strength of quantum computers is the ability to improve the scaling of certain problems
with their size, and thus make them solvable.

The theory of quantum computation was initiated in early 1980s [2, 3]. The original
proposal was to simulate quantum systems, which is one type of problem with a scaling
law that can be greatly lowered using quantum computers. Later, more problems were
discovered with a scaling law that can be improved by quantum algorithms [4, 5], which
can be applied in many areas of great impact. Yet a practical quantum computer has not
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been realized after 30 years of hard work. The designs of quantum computers are based
on a variety of systems and their combinations [5, 6]. An example is the application of
quantum information protocols using the energy levels induced in the system based on
nitrogen vacancy center defects in diamond. Qubits are defined with two of these energy
levels and information is propagated by emitted photons. Another example is a trapped
ion quantum computer that stores quantum information in the electronic states of each ion
and uses laser pulses to manipulate them. There are also many other quantum computer
candidates on different physical system such as NMR, linear optics, quantum dots or the
system of interest of this thesis–superconducting circuits.

In this thesis, we focus on the superconducting circuits for applications on quantum
computation, which relies on fundamental quantum properties of superconducting materi-
als. When circuit elements are carefully designed, a two-level system can be well isolated
and carry one bit of quantum information, forming a qubit. Superconducting circuits have
good potential for scalability [7, 8]. However, a single qubit is difficult to control. A super-
conducting qubit involves billions of electrons to carry the information. Such large number
of particles is sensitive to environmental fluctuations caused by several sources of noise,
which can erase the information in a few microseconds or even less. To mitigate the effects
of noise, two strategies can be combined. On the one hand, efforts are pursued to reduce
the strength of noise [9, 10] and its coupling to the qubit [11, 12]. On the other hand,
the time required for qubit operations can be reduced [13, 14]. In this thesis, we present
our results on both aspects by studying a protected superconducting circuit and the qubit
evolution under a strong driving signal.

In the rest of this chapter the fundamental theoretical concepts are introduced, and
examples of superconducting qubits are presented. In Chapter 2, a superconducting cir-
cuit called the zero-pi qubit is investigated. The design of this new qubit emphasizes the
protection of the qubit states, while keeping a high anharmonicity. Its Hamiltonian and its
eigenstates are studied, as well as its decoherence processes. In Chapter 3, the attention
is turned to the fast qubit control. The qubit evolution under strong driving is explored.
Driving a qubit strongly is a way to achieve fast quantum operations. However, the dy-
namics become complex and deviate significantly from typical qubit behaviour using the
standard description. Under strong driving conditions, the standard description breaks
down and understanding the optimal qubit operations becomes difficult. Thus, a model
based on Floquet theory is built in order to describe the dynamics, and it is applied to the
experimental results. In the last chapter the results are summarized and their importance
as well as prospects for future research are are discussed.
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1.1 Quantum computation

This section contains a very brief introduction to the formalism of quantum computation.
A complete description can be found in [5]. Quantum computation represents information
processing based on the quantum evolution of physical systems. The information in a
quantum computer corresponds to the combined configuration of many two-state systems.
We use |0〉 and |1〉 to represent the states of each two-state system. As any quantum states,
they can be built into superpositions,

|ψ〉 = α |0〉+ β |1〉 . (1.1)

Here, |ψ〉 is the state information stored in the qubit. The coefficients α and β are complex
scalars. The phase difference φ between α and β is an important nonclassical channel to
store information. The state is usually expressed by a vector

|ψ〉 =

(
α
β

)
. (1.2)

The basis of this representation is {|0〉 , |1〉}.

The information manipulation is accomplished by quantum gates. In matrix form,
qubit gates are represented by unitary matrices. Some commonly used qubit gates are:

1. Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
. (1.3)

2. Pauli-X, -Y, -Z gates:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1.4)

3. Phase shift gates:

Rφ =

(
1 0
0 eiφ

)
. (1.5)

However, single qubit gates are not sufficient to accomplish quantum computation.
Gates involving two or more qubits are required for universal quantum computation. Some
commonly used multi-qubit gates are:
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1. Controlled-NOT gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.6)

2. Controlled-PHASE gate

CPHASE =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (1.7)

3. Control unitary gate

C(U) =


1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

 . (1.8)

4. The Toffoli gate

T =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (1.9)

The matrix representation of the operators has dimension d = 2n where n is the number of
involved qubits. For those operators involving multiple qubits, we take the direct product
of each qubit Hilbert space to obtain the full Hilbert space. For example, matrices with
dimension 4 have basis {|0〉 |0〉 , |0〉 |1〉 , |1〉 |0〉 , |1〉 |1〉}.

An important result in quantum computing is the Solovay-Kitaev theorem [15]. The
theorem guarantees that any quantum operation on a set of qubits can be decomposed into
a set of the gates presented above. We do not discuss further how to perform quantum
algorithms by these quantum gates in detail. Nevertheless, we want to emphasize that
quantum computer is built by many basic qubit gates. We have to make efforts to ensure
that every qubit gate performs as designed.
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Although we have all the ingredients to build a quantum computer, we are still far from
the success because of the effect of errors. In superconducting circuits, errors can arise due
to imperfect circuit fabrication, Cooper-pair number and surface spin fluctuation, quasi-
particle tunneling and many other sources of noise. Each error source impacts the qubit
in a particular way. Some sources cause dephasing of the qubit state, inducing the loss of
the phase information φ. Some sources induce relaxation processes, turning the system to
the equilibrium state and erase all the information. The operations can also be affected
by errors. For example, imperfect time control can lead to errors in state evolution. One
systematic way to describe the error is to insert an additional term in the Hamiltonian,

H = H0 + ∆H. (1.10)

Here, H0 is the ideal Hamiltonian, and ∆H is the error term. If the qubit is a two-level
system with energy gap ∆, we can write the Hamiltonian in the energy eigenbasis as

H0 = −∆

2
σz, (1.11)

where σz is the Pauli matrix. Dephasing of the qubit is given by

∆Hdephasing = N1(t)σz. (1.12)

The function N(t) is time-dependent. The noise term disturbs the energy level splitting
of the qubit, thus shifting the phase of |0〉 and |1〉 after a period of time. Eventually,
although the information stored in the modulus of the coefficients is unchanged, the phase
information is lost. Thus this process is called dephasing process.

The other type of noise can be written as

∆Hrelaxation = N2(t)σx. (1.13)

Again, N2(t) is a noisy function and σx is a Pauli matrix. The operator σx causes a tran-
sition between the two qubit states, thus erasing the information stored in the amplitudes
of the states. This process is known as relaxation. Note that relaxation is always accom-
panied by the loss of phase information. The time of relaxation and dephasing are very
important to characterize the decoherence process of a qubit.

1.2 Superconducting circuits

In this section we discuss the field of superconducting circuits. A complete review of
superconductivity can be found in [16, 17]. Information about superconducting circuits
and quantum electrodynamics (QED) can be found in [18].
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The number of atoms in a superconducting circuit is on the order of ∼ 108 or larger,
and therefore it is impractical to describe the state of each atom individually. Instead, we
use a macroscopic wave function [16] Ψ(r) = |Ψ|eiϕ that describes the ground state of the
entire system in the superconducting state. In superconducting circuits, the macroscopic
phase of the wavefunction is useful to depict the dynamics of the system. Generally in any
circuit it is possible to define the flux in a node from the voltage at that node by [19]

Φ(t) =

∫ t

−∞
V (t′)dt′. (1.14)

For an isolated block of superconducting material, also known as a superconducting island,
the node flux Φ can be related to the macroscopic phase of the superconductor by ϕ =
Φ/ϕ0, so that the above equation can be rewritten as

ϕ0ϕ̇ = V, (1.15)

where ϕ0 = ~/2e is the reduced magnetic flux quantum with ~ = h/2π the reduced Planck
constant.

The simplest circuit elements are the inductor L and capacitor C. In an inductor L,
current and flux are related by Φ/L = I, while in a capacitor C voltage and charge are
related by q = CV . These equations can be written for the superconducting phase,

ϕ0ϕ

L
= q̇, (1.16)

and
ϕ0ϕ̇C = q. (1.17)

The Lagrangian of an inductor and a capacitor can therefore be written as

L =
ϕ2

0

2C
ϕ̇2 − ϕ2

0

2L
ϕ2. (1.18)

The phase across the inductor ϕ is a canonically conjugate variable to the Cooper-pair num-
ber on the capacitor n = q/2e = ∂L/∂~ϕ̇, obeying the commutation relation of conjugate
operators

[ϕ, n] = i. (1.19)

Another important circuit element is the Josephson junction [20]. A Josephson junction
consists of two superconducting islands and a link between them. The superconductivity is
weakened at the link. The suppression of superconductivity can be caused by the presence
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of a non-superconducting metal, a narrowed superconducting wire, a misalignment of the
superconductor crystal, among other approaches. In practice, the insulating barrier is
used most commonly. This type of junction is also known as superconductor-insulator-
superconductor (S-I-S) Josephson junction. Its advantages are the fabrication reliability
and well-understood theory compared to the other types. The current that flows through
the junction follows the first Josephson relation [20]

I = Ic sin(δϕ). (1.20)

Here I is the current flowing through the junction and δϕ is the superconducting phase
difference between the two superconducting islands on each side of the junction. The
critical current Ic is the maximum supercurrent that can flow through the junction. When
ϕ is small, we can take the first order approximation of the current-phase relation

I = Icδϕ. (1.21)

This shows that when the phase difference is small, the junction behaves as an inductor.
However, when the phase difference increases this relation becomes non-linear. The non-
linearity plays a crucial role in superconducting qubits: it breaks the harmonic levels in
in a simple LC circuit formed by a Josephson junction and a capacitor, therefore creating
an artificial atom. Most superconducting circuits are built by inductors, capacitors, and
Josephson junctions. We give examples in the next section.

1.3 Superconducting qubits

Superconducting circuits provide very large flexibility in designing an artificial atom. The
intrinsic level splitting can be achieved in a wide range to match the designated parameters.
In this section we discuss three well-established types of superconducting qubits together
with their advantages and disadvantages.
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1.3.1 The charge qubit

𝑉𝑔 

𝐶 

Figure 1.1: The circuit model of a charge qubit. The cross symbol represents the Josephson
junction. The dashed box shows a superconducting island which is connected to the circuit
through the Josephson junction and a capacitor C.

The charge qubit is one of the simplest superconducting qubits. It has one small super-
conducting island and a larger island known as the reservoir [21, 22]. The small island and
the reservoir are coupled by a Josephson junction and a gate capacitor. The small island is
also known as Cooper-pair-box, and the number of Cooper pairs on the island determines
the qubit state. Figure 1.1 shows the circuit diagram of a charge qubit. The Hamiltonian
of a charge qubit can be written as

H =
1

2
EC(n− ng)2 − EJ cos(δϕ), (1.22)

where EC is the capacitance energy defined as EC = (2e)2

CJ+C
with the parasitic capacitance of

the junction CJ and the capacitance of the capacitor in the circuit C. The Josephson energy
EJ is defined as Icϕ0. The operator n is the number operator of Cooper pairs. The gate
charge ng = CVg/2e represents the induced charge on the small island by the gate voltage
Vg. The gate voltage Vg consists of a static voltage and an additional noisy term, which
represents the charge noise. In the charge qubit, the capacitance energy is much larger
than the Josephson energy, making the Cooper-pair number a good quantum number. We
plot the energy spectrum versus gate charges in figure 1.2. The circuit parameters are
EJ/h = 12.52 GHz and EC/h = 226.32 GHz, the same as the parameters in [21].
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Figure 1.2: A typical energy spectrum of the charge qubit. The red box shows the qubit
area, where the sensitivity to charge noise is maximally suppressed.

By varying the gate charge, the energy difference between the lowest states of the system
changes. Usually, the gate charge is tuned to a half-integer, such that the energy gap is
insensitive to first order to gate charge fluctuations. Assuming the gate charge is ng = 0.5,
the avoided-level crossing between |n = 0〉 and |n = 1〉 defines the two-level system of the
qubit,

|0〉 =
1

2
(|n = 0〉 − |n = 1〉) (1.23)

and

|1〉 =
1

2
(|n = 0〉+ |n = 1〉) . (1.24)

Although the influence of gate charge on the energy gap is eliminated to first order at
ng = 0.5, the fluctuation of the gate charge can still cause serious relaxation and dephasing.
Koch et al. [11] proposed a modification of the charge qubit in which the relation of EC and
EJ is reversed. In this case the qubit is insensitive to the offset charge. A more detailed
account of this will be given later.
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1.3.2 The flux qubit

𝜑1 

𝜑3 

𝜑2 

𝛼 

Figure 1.3: The circuit model of a flux qubit. The circuit consists of two identical junctions
and an alpha junction which is plotted in red (*indicate with “α” in the drawing which
one it is*). The alpha junction differs in size to the other junctions. The arrows indicate
the direction of phase drop.

A flux qubit consists of three Josephson junctions in a loop. Two junctions are identical
while the third one, which is called the alpha junction, is smaller by a factor α ≈ 0.8 [23].
In contrast to the charge qubit, the Josephson energy of the junctions is larger than the
charging energy thus making the phase difference across each junction a good quantum
number. The Hamiltonian of the flux qubit is

H =
1

2

(2e)2

2C
~P TM−1 ~P + EJ (2 + α− cosϕ1 − cosϕ2 − α cos(2πfx + ϕ1 + ϕ2)) . (1.25)

Here, the vector ~P = (n1, n2)T , with Cooper-pair number operators n1 and n2, representing
the Cooper pair number on junction 1 and junction 2 respectively, where ϕi represents the
phase difference across junction i. fx = Φx/ϕ0 is the normalized applied magnetic flux. In
the above equation phase quantization [16] has been applied ϕα = ϕ1 + ϕ2 + 2πfx. The
matrix M is determined by the ratios of the capacitances in the system:

M =

(
1 + α −α
−α 1 + α

)
. (1.26)

In the Hamiltonian, fx reflects the magnetic flux penetrating the loop. We plot the poten-
tial energy as a function of ϕ1 and ϕ2 in figure 1.4. We use the same parameters as the
circuit in [24].
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Figure 1.4: The potential energy of a flux qubit. The red dots indicate the bottom of the
well.

Within each 2π period of the potential, there are two wells, and we denote the ground
states as |↑〉 and |↓〉 for the states in the upper-left and lower-right wells respectively
(*show in the plot which is which*). The eigenstates of the flux qubit correspond to
superpositions of |↑〉 and |↓〉. State |↑〉 represents current flowing clockwise in the loop,
while state |↓〉 represents current flowing counterclockwise. When fx = 0.5 the eigenstates
are (|↑〉 ± |↓〉)/

√
2 and the qubit generates no net flux. Away from fx = 0.5 the system

presents a non-zero current in each of its states, with opposite sign for the ground/excited
state. Thus the flux qubit is also known as the persistent current qubit. The energy
spectrum is plotted in figure 1.5. The circuit parameters are EJ/h = 259 GHz, EC/h = 59.2
GHz, and α = 0.8, the same parameters as the circuit in [24].
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Figure 1.5: The spectrum of a flux qubit. The red box shows the symmetry point fx = 0.5
and its vicinity. In this area, the energy splitting of the qubit levels has minimal sensitivity
to the magnetic noise. Notice the difference in energy to the third qubit level shown in
green.

The flux qubit is mostly insensitive to gate charges, but the potential energy is affected
by the external magnetic flux fx. The fluctuations of the flux can cause dephasing and
relaxation of the qubit.

1.3.3 The transmon qubit

The transmon qubit is developed based on the charge qubit [11, 25]. The transmon qubit
is design to be insensitive to both charge noise and flux noise. The transmon qubit shares
the same circuit diagram with the charge qubit, but it decreases the ratio of EC/EJ , by
shunting the Josephson junction with a large capacitor. The Hamiltonian of a transmon
qubit is

H =
1

2
EC(n− ng)2 − EJ cosϕ. (1.27)

Here, we have the capacitance energy EC = (2e)2/(C+CJ), with C the capacitor shunting
the junction and CJ the parasitic capacitor of the junction. n is the number operator and
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ϕ the phase difference across the junction. ng is the gate charge. Because in the transmon
qubit we have EJ > EC , the dependence of the charge is suppressed. We plot the energy
against the gate charge in figure 1.6. The circuit parameters are EJ = 17.45/h GHz,
EC/h = 3.088 GHz, with the same parameters as [26].

-1.0 -0.5 0.0 0.5 1.0
0
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y
(G
H
z)

Figure 1.6: The spectrum of a transmon qubit. Compared to the spectrum in figure 1.2, the
dependence on the gate charge is greatly suppressed. In other words, the qubit spectrum
is insensitive to charge noise.

However, the dependence on the charge is not totally eliminated. We plot the energy
difference of the ground state and the first excited state in figure 1.7
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Figure 1.7: The spectrum transition frequency between the ground state and the first
excited. The dependence on the gate charge is weak but not zero.

The transmon qubit is not affected by the external flux, and is mostly insensitive to
the charge noise, but it is still not perfect. The increasing ratio of EJ/EC suppresses the
anharmonicity of the qubit, leading to a similar energy gap between the ground state to
the first excited state, and the first excited state to the second excited state. Because of
the low anharmonicity, the signal which drives the transition between |0〉 ↔ |1〉 also drives
|1〉 ↔ |2〉, leading to information loss to noncoding space. In order to suppress leakage,
slow pulses with specific shapes must be applied, which require specific electronics to be
generated [27]. Slow pulses also imply that qubit state control is slower and gate times are
increased, reducing the efficiency of each qubit gate.

1.4 Noise in superconducting qubits

We have introduced several types of superconducting qubits in the previous section. We
have seen that the noise is a very important factor in qubit design. Understanding the
noise is important to improve the qubit performance. In this section, we introduce the
charge noise and the flux noise, which are considered as two major sources of decoherence.
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1.4.1 Charge noise

The charge distribution in a superconducting circuit can be described by a time-dependent
function. However, the function fluctuates due to charge noise. The fluctuations can have
a complicated form, but we usually assume it is Gaussian noise [25, 28]. Moreover, it
has been observed in experiments that charge noise has a 1/f character [29], meaning its
power spectral density is inversely proportional to frequency, Scharge(f) ∝ 1/f regardless
of geometry or material.

The physics of the charge noise is not completely understood, but the model of gate
charge is usually sufficient to simulate it. A superconducting device usually consists of three
parts: the circuit, a layer of substrate, and a layer of ground plane. The circuit is isolated
from the superconducting ground plane [25, 30], and generates a parasitic capacitance
between them. In the ground plane, the charge distribution has some randomness and can
attract a positive or negative charge in the nearby circuit island. This effect can lead to
the charge noise we observed in the experiment.

1.4.2 Flux noise

If the qubit circuit has a loop, the magnetic field penetrating the loop modifies the super-
conducting phase due to phase quantization. The fluctuation of the magnetic flux is called
flux noise. Similar to charge noise, flux noise is assumed to be Gaussian noise with 1/f
character [31]. The origin of the flux noise is not fully understood. Some research proposed
spin disorder on the superconducting surface [32] as one of the candidates to explain flux
noise.
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Chapter 2

Noise Analysis of the Zero-Pi
Superconducting Qubit

In this chapter, we investigate the properties of the zero-pi superconducting qubit. The
zero-pi qubit was proposed by Kitaev [33], based on the current-mirror-effect [34]. Demp-
ster et al. analyzed this qubit based on numerical simulations in [35], and Brook et al.
designed a protected qubit gate based for the zero-pi qubit [36]. The zero-pi qubit features
two nearly degenerate low energy states and has good protection against charge and flux.
In the original proposal, Kitaev provides a series of arguments on the robust noise protec-
tion of the zero-pi qubit [33]. Here we present an extensive analysis of the properties of
the zero-pi qubit starting with the circuit model. The effective Hamiltonian for the ground
state doublet is then derived using a combination of the Born-Oppenheimer approximation,
tight-binding band calculations, and perturbation theory. Based on the analytic result, we
investigate the role of charge and flux noise. Numerical techniques are used to verify the
validity of the analytical approximations.

A full description of the zero-pi qubit relies on three degrees of freedom. One of the
three is decoupled and merely two degrees of freedom are relevant. The two degrees of
freedom are characterized by widely different frequencies. Therefore, we can apply the
Born-Oppenheimer approximation to further eliminate a degree of freedom, which leads to
a one-dimensional problem. The Schrödinger equation for the one-dimensional problem is
identical to a particle in a π-periodic potential, which determines the qubit levels.

We firstly analyze the effect of gate charges coupled to the inductor in a radio-frequency
superconducting quantum interference device (RF-SQUID) in Section 2.1, which provides a
result important for the analysis of the zero-pi qubit. We then analyze the circuit model of
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the zero-pi qubit and show that only two out of three variables are relevant in Section
2.2. Next, we use the Born-Oppenheimer approximation to obtain a one-dimensional
Hamiltonian in Section 2.3 and we apply the tight-binding approximation in Section 2.4.
We compare our result with numerical simulations in Section 2.5. We discuss the error
contributed by the charge and the flux noises in Section 2.6. The conclusion of the work
is presented in Section 2.7. A strict mathematical derivation of the Born-Oppenheimer
approximation can be found in Appendices.

2.1 Charge noise in RF-SQUID

In this section, we discuss the dynamics of the charge noise in an inductor in an RF-
SQUID circuit. The charge noise analysis for the RF-SQUID directly contributes to the
later analysis on the zero-pi qubit. The model is similar to a fluxonium qubit [12], which
consists of an inductively shunted Josephson junction. The qubit dynamics and noise effects
for the fluxonium have been studied both theoretically and experimentally [12, 37, 38]. Here
we draw attention to the mechanism of through which the charge noise coupled at different
points in the inductor affects the system. This mechanism helps us understand the role
played by inductors in the zero-pi qubit.

2.1.1 Circuit model of a single gate charge source

An RF-SQUID is a superconducting circuit consisting of a Josephson junction and an
inductor. To simulate the effect of the charge noise, we couple the system to a noisy
voltage source through a gate capacitor. The gate capacitor should be sufficiently small so
that it does not significantly change the dynamics of the system. Since we are particularly
interested in the effect of charge noise in the inductor, the attachment point of the gate
capacitor is chosen in the inductor, as shown in figure 2.1. The attachment point separates
the inductor into two parts, with inductances L1 and L2 respectively, satisfying L1+L2 = L,
where L is the total inductance. We define α = L1/L with 0 < α < 1. The Hamiltonian,
which depends on α, is given by

Hα =
1

2
ECn

2
ϕ +

1

2
ECg(nγ + ng)

2 − EJ cosϕ+
1

2

EL
α
γ2 +

1

2

EL
1− α

(ϕ− fx − γ)2. (2.1)

Here, ϕ corresponds to the superconducting phase difference on the junction and nϕ =
qϕ/2e, with qϕ the junction capacitor charge. They obey the canonical conjugation relation
[ϕ, nϕ] = i. Another pair of canonically conjugate operators are γ and nγ, which are the
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superconducting phase difference on L1 and its canonically conjugate momentum. We
also introduce the gate charge ng = CgVg/2e and the dimensionless external magnetic flux
through the RF-SQUID loop fx = Φ/(~/2e). The four energy scales characterizing the
circuit are the charging energy of junction capacitance EC = (2e)2/C, the charging energy
of gate capacitor ECg = (2e)2/C, the Josephson energy EJ , and the inductive energy
EL = (~/2e)2/L.

𝑉𝑔 

𝐶𝑔 

𝐿1 𝐿2 

𝐿 

𝐶,  𝐽 

Figure 2.1: The circuit diagram of an RF-SQUID with a gate voltage coupling. The
coupling point separates the inductor into two parts with inductances L1 and L2.

It is useful to compare the Hamiltonian in 2.1 with the Hamiltonian of an RF-SQUID
without gate capacitors, given by [17]

HRF-SQUID =
1

2
ECn

2
ϕ − EJ cosϕ+

1

2
EL(ϕ− fx)2. (2.2)

We rewrite the Hamiltonian in 2.1 as

Hα = HRF-SQUID +
1

2
ECg(nγ + ng)

2 +
1

2

EL
α(1− α)

(γ − α(fx − ϕ))2 . (2.3)

The gate charge ng and the external frustration fx are time-dependent quantities. They
consist of a static term and a random term due to device noise. For example, ng(t) =
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ng(0) + δng(t), where δng(t) is a small time-dependent fluctuation. The static part can
be eliminated by the transformation f̃ = e−ingγf and f̃(γ) = f(γ + α(fx − ϕ)), where f̃
and f are the transformed and the original wavefunctions. Thus we can set ng(0) = 0
and fx(0) = 0, and the Hamiltonian only depends on the small fluctuations δng(t) and
δfx(t). In this section, we neglect the effect of the fluctuations. We will analyze the effect
of fluctuations, using perturbation theory, in the next section.

The relation expressed in equation 2.3 shows that the Hamiltonian of the system is
that of an RF-SQUID coupled to a harmonic oscillator through the superconducting phase.
Moreover, because the gate capacitance is small compared to the capacitance of the junc-
tion, we are in the regime ECg � EC , and the dynamics of γ and ϕ is therefore analog
to electron-nuclear problem. The dynamics of γ plays the role of the position of the mov-
ing electron, and ϕ behaves like the nucleus. Following an approach commonly used in
quantum chemistry and molecular physics, we apply the Born-Oppenheimer (BO) approx-
imation. The key to the BO approximation is to identify a rapid part and an inertial part
in the system. The rapid part remains in the instantaneous ground-state configuration
scale while the inertial part barely changes. In a first step, the Schrödinger equation of
the rapid part has to be solved by neglecting the kinetic energy of the inertial part. The
eigenenergies to the Schrödinger equation are known as potential energy surfaces in the
BO approximation. In the second step the kinetic energy of inertia part is reintroduced.
Together with the potential energy surfaces, they determine the Schrödinger equation of
the inertial part. More details about the approximation can be found in Appendix A, see
also reference [39].

We start by introducing a basis

ψnk(ϕ, γ) = Fnk(ϕ)fk(γ;ϕ), (2.4)

where ϕ and γ are the variables of the inertial part and the rapid part respectively. The
wavefunction fk(γ;ϕ) is the kth eigenstate of the Hamiltonian

Hγ =
1

2
ECgn

2
γ +

1

2

EL
α(1− α)

γ2, (2.5)

describing the state of the rapid part, with eigenenergies Ek(ϕ). The Hamiltonian of the
rapid part takes the form of a harmonic oscillator Hamiltonian with generalized momentum
nγ and generalized position γ. The noise terms ng and fx do not appear in the Hamiltonian
due to the transformation introduced previously. This fact dramatically simplifies the
problem in the following aspects. Firstly, the matrix element 〈fl|O |fk〉 is independent on
ϕ or ng unless the operator O explicitly depends on fx or ng. Secondly, the spectrum of
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the rapid part, i.e. Ek(ϕ), is independent on ϕ. Hence, we neglect the ϕ dependence by
writing the eigenenergy as a constant Ek. The energy Ek is also known as an energy surface
[39]. With the energy surface we can obtain the inertial part wavefunction Fnk(ϕ), which
is the nth eigenstate with eigenenergy Enk of the Hamiltonian

Hϕ = HRF-SQUID + Ek. (2.6)

Since Ek does not depend on ϕ, the wavefunction is k independent: |Fnk〉 = |Fn〉.

The basis {ψnk} does not diagonalize the full Hamiltonian. However, we will see that
the basis diagonalizes a part of the Hamiltonian and left with a term that can be treated
with perturbation theory. The matrix elements of the exact Hamiltonian for states |ψml〉
and |ψnk〉 is given by

〈ψml|Hα |ψnk〉 = Enkδmnδlk + 〈ψml|Hcorr |ψnk〉 , (2.7)

where δmn is Kronecker delta symbol. The matrix elements of Hcorr are

〈ψml|Hcorr |ψnk〉 = −1

2
EC

(
2 〈Fm|

∂

∂ϕ
|Fn〉 〈fl|

∂

∂ϕ
|fk〉+ 〈Fm|Fn〉 〈fl|

∂2

∂ϕ2
|fk〉
)
. (2.8)

It is straightforward to evaluate 〈fl| ∂∂ϕ |fk〉 and 〈fl| ∂
2

∂ϕ2 |fk〉 by replacing ∂ϕ by α∂γ =

iαnγ. Nevertheless, before the calculation we can tell 〈fl| ∂∂ϕ |fk〉 and 〈fl| ∂
2

∂ϕ2 |fk〉 are ng
independent, and |Fn〉 are also ng independent. Consequently, Hcorr determines a ng-
independent correction to the full Hamiltonian. In other words, the static charge offset
does not modify the energy spectrum. We conclude that the energy spectrum of an RF-
SQUID is invariant with respect to different static offset charge on the inductor. However,
we can not conclude anything about the non-static gate charge effect. In fact, in the next
subsection we will see that the dynamical effect of charge noise is important.

Note that introducing the gate capacitor does change the energy spectrum, as Hcorr is
non-zero. This contribution scales with the gate of capacitance and, therefore, it can be
neglected.

2.1.2 Dynamics of charge noise

The static offset charge has no influence the spectrum. However, the dynamics of the
charge noise stimulate transitions between different levels and causes energy relaxation
and dephasing. The transition rate between different states induced by charge noise can be
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calculated using time-dependent perturbation theory. The theory is introduced in many
textbooks, see for example [40]. We start by rewriting the full Hamiltonian in 2.1 as a
function of ng(t):

Hα(ng) = Hα(0) +Ht(ng). (2.9)

Here, we set the offset charge at time t = 0 to be ng(0) = 0 to simplify the calculation,
and define Ht(ng) = ECgnγng. A nonzero offset charge at time t = 0 can be eliminated

by a gauge transformation ψ̃ = e−ing(0)γψ. The term ECgn
2
g/2 is neglected since it gives a

uniform energy shift and does not change the dynamics of the system.

Before applying time-dependent perturbation theory, we derive the wavefunctions in the
Born-Oppenheimer approximation. It is convenient to introduce two quantities: Dmn

ϕ =

〈Fm| ∂∂ϕ |Fn〉 and β = EL
α(1−α)ECg

. The eigenenergies of Hγ, which are defined by equation

2.5, can be thus given by ECgβ
1
2 . The ground state up to the first order correction is

|Ψ0〉 ≈ |ψ00〉+
∑
nk

〈ψnk|Hcorr |ψ00〉
E00 − Enk

|ψnk〉 (2.10)

= |ψ00〉 − EC

(∑
n≥0

√
2

2

αβ
1
4Dn0

ϕ |ψn1〉
En1 − E00

+

√
2

4

α2β
1
2 |ψ02〉

E00 − E02

)
, (2.11)

where |ψnk(ϕ, γ)〉 = |Fnk(ϕ)〉 |fk(γ;ϕ)〉 are the basis states we used in the previous section
(see equation 2.4). The validity of the approximation is guaranteed by the smallness of the
correction coefficients,

αβ
1
4

En1 − E00

≤ αEC

ECgβ
1
2

=

(
α5(1− α)E4

C

E3
Cg
EL

) 1
4

� 1, (2.12)

and

ECα
2β

1
2

E00 − E02

=
α2EC
2ECg

� 1. (2.13)

Here, we use the relation ECg � EC and ECg/EC > EC/EL based on the general consider-
ation that Cg is sufficiently small. Similarly, the corrected wavefunction of the first excited
state is given by

|Ψ1〉 ≈ |ψ10〉 − EC

(∑
n≥0

√
2

2

αβ
1
4Dn0

ϕ |ψn1〉
En1 − E10

+

√
2

4

α2β
1
2 |ψ12〉

E10 − E12

)
. (2.14)
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The energies up to the first order correction are

E0 =E00 + 〈ψ00|Hcorr |ψ00〉 = E00 +
EC
4
α2β

1
2 , (2.15)

E1 =E10 + 〈ψ10|Hcorr |ψ10〉 = E10 +
EC
4
α2β

1
2 , (2.16)

where we denote the ground energy by E0 and the energy of first excited state by E1.

We then apply the time-dependent perturbation to the system. Assume the initial
state is the ground state |Ψ(0)〉 = |Ψ0〉. At time t and to the first order, the transition
probability from |Ψ0〉 to the first excited state |Ψ1〉 is given by,

p01 = |〈Ψ1|U1(t) |Ψ0〉|2 , (2.17)

where U1(t) is the first term of Dyson series [40] U1(t) = −iECg
∫
eiH0tnγe

−iH0tngdt. Ne-
glecting the second and higher orders of EC

ECg
in the result, we obtain

p01 =

∣∣∣∣αECD01
ϕ

∫
ei(E1−E0)tng(t)dt

∣∣∣∣2 . (2.18)

This is the expression describing the dynamical effect of the charge noise. This expression
shows that the dynamical effect of the charge noise in the inductor is equivalent to the
dynamical effect of charge noise on the island suppressed by a factor α. When α = 1, the
expression reduces to the island coupled case as expected. Note that the conclusion does
not depend on the specific form of the wavefunction |Fn(ϕ)〉. Hence the conclusion is also
valid if we replace the Josephson junction with other systems.

2.1.3 Linearity

To better model the charge noise, we analyze the case where the system is coupled to
multiple charge noise sources. Generally all charge noise sources must be calculated si-
multaneously. In this section, we prove that the effect of multiple noise sources can be
calculated is combined in a linear fashion. Therefore, one representative noise source is
sufficient for the analysis. We consider a model with two gate charge sources, as shown in
2.2.
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Figure 2.2: The circuit diagram of an RF-SQUID with two coupled gate voltage sources.
The coupling points separate the inductor into three parts.

The Hamiltonian of the system is,

H = HRF-SQUID +
1

2
ECg

(
(nγ1 − ng,1)2 + (nγ2 − ng,2)2

)
+

+
1

2
EL

(
γ2

1

α1

+
(γ1 − γ2)2

α2 − α1

+
(γ2 − (ϕ− fx))2

1− α2

− (ϕ− fx)2

)
. (2.19)

The key to our analysis is finding a away to decouple the variables. We apply the trans-
formation {γ1, γ2} → {x1, x2} such that x1 and x2 are decoupled. To find out the proper
transformation, we write the quadratic phases terms in matrix form,

γ2
1

α1

+
(γ1 − γ2)2

α2 − α1

+
(γ2 − (ϕ− fx))2

1− α2

− (ϕ− fx)2 = ~vTM~v, (2.20)

where ~v = (γ1, γ2, ϕ− fx)T and

M =

 1
α1

+ 1
α2−α1

− 1
α2−α1

0

− 1
α2−α1

1
1−α2

+ 1
α2−α1

− 1
1−α2

0 − 1
1−α2

α2

1−α2

 . (2.21)

We select the new basis {x1, x2} such that it diagonalize the upper-left 2× 2 subspace

with eigenvalues λ1 and λ2. For simplicity we define θ = cot−1
(

1
2

(
α2

α1
− 1−α1

1−α2

))
. Then we
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can write the new basis as x1 = γ1 cos(θ/2)−γ2 sin(θ/2) and x2 = γ1 sin(θ/2)+γ2 cos(θ/2).
The variables in the new basis are decoupled from each other while they both couple to
ϕ. Following the same procedure as in the previous section based on time-dependent
perturbation, we obtain the transition probability for two noise sources, given by

p01 =

∣∣∣∣ECD01
ϕ

∫
ei(E1−E0)t

(
sin(θ/2)

λ1(1− α2)
ng,x1 −

cos(θ/2)

λ2(1− α2)
ng,x2

)
dt

∣∣∣∣2 , (2.22)

where ng,1 = nγ,1 cos(θ/2)− nγ,2 sin(θ/2) and ng,2 = nγ,1 sin(θ/2) + nγ,2 cos(θ/2) are trans-
formed gate charges. Through some tedious but straightforward calculations, we find that
these two noise source are combined linearly:

p01 =

∣∣∣∣ECD01
ϕ

∫
ei(E1−E0)t (α1ng,1 + α2ng,1) dt

∣∣∣∣2 . (2.23)

The linearity of the combined effect for more than two sources can be proved along the
same lines.

In this section we proved that static charge noise does not affect the system, and the
dynamical effect the charge noise is equivalent to the charge noise on the island with a
suppression factor α. Moreover, independent sources can be added linearly.

2.2 Circuit analysis of the zero-pi qubit

In this section we develop the circuit model of the zero-pi qubit. We will discuss the
dynamics of the zero-pi qubit and the protection against the charge and flux noises. A
good way to visualize the circuit is to place each circuit element on the edge of a tetrahedron
figure 2.3. The circuit consists of a pair of identical Josephson junctions, a pair of identical
capacitors, and a pair of identical inductors. The elements in each identical pair are on
the opposite edges of the tetrahedron. When the system is in its ground state doublet
space, the superconducting phase difference of the ends of each edges with the capacitor is
a superposition of 0 or π. This is also why the qubit is called “zero-pi qubit”. The zero-pi
qubit is interesting for two reasons. Firstly, it was predicted that the zero-pi qubit has
a high immunity to noise [35, 33]. Secondly, the possibility exist to implement protected
quantum gates [36]. These properties are very important for building reliable qubits.
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Figure 2.3: The circuit diagram of a zero-pi qubit, including a tetrahedron style (left) and
a plain style (right).

To develop a systematic theory of the zero-pi qubit, we begin with the standard circuit
model. We will keep as much as possible the same notion as in the previous sections.
Definitions will be given for symbols that have different meaning. We label the nodes as
1,2,3,4 taken in clockwise orientation, see figure 2.3. Then we denote the superconducting
phase on each node by ϕj, where j = 1, ..., 4. However, because only the difference of the
phases is relevant, the number of degrees of freedom is three. One of the variable depends
on the other three variables, but we will only discard it after the transformation. To model
the charge noise effect we couple nodes 2, 3, 4 with gate voltages and gate capacitors. We
can express the kinetic and potential contributions to the Lagrangian as

T =
ϕ2

0

2

(
CJ
(
(ϕ̇1 − ϕ̇2)2 + (ϕ̇4 − ϕ̇3)2

)
+ C0

(
(ϕ̇4 − ϕ̇1)2 + (ϕ̇3 − ϕ̇2)2

))
+
Cg
2

(
(ϕ0(ϕ̇2 − ϕ̇1)− Vg2)2 + (ϕ0(ϕ̇3 − ϕ̇1)− Vg3)2 + (ϕ0(ϕ̇4 − ϕ̇1)− Vg4)2

)
(2.24)

and

V = −EJ(cos(ϕ2 − ϕ1) + cos(ϕ3 − ϕ4))

+
1

2
EL
(
(ϕ4 − ϕ2 − fx − δfx)2 + (ϕ1 − ϕ3 − fx/2 + δfx)

2
)

(2.25)

respectively. Here, we focus on the ideal symmetric circuit. The effect of disorder on the
circuit elements is discussed in [35]. In the kinetic part T , the three capacitances are the
parasitic capacitor of Josephson junctions CJ , the capacitors in the circuit C0, and the
gate capacitors Cg. The reduced dimensionless flux quantum is denoted by ϕ0 = ~/2e. In
the potential part V , the two energy scales are the Josephson energy EJ and the inductive
energy EL = ϕ2

0/L, where L is the inductance of each inductor. The external magnetic flux
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penetrating the loop is Φx. In the following we will express the external flux as Φx = 2fxϕ0,
with fx a reduced flux variable accounting for the flux through half of the loop formed of
the two Josephson junctions and the two inductors.

The next step is to apply the transformation,

γ+ =
1

2
(ϕ1 − ϕ2 − ϕ3 + ϕ4) , (2.26)

γ− =
1

2
(ϕ1 − ϕ2 + ϕ3 − ϕ4) , (2.27)

γho =
1

2
(ϕ1 + ϕ2 − ϕ3 − ϕ4) , (2.28)

γre =
1

2
(ϕ1 + ϕ2 + ϕ3 + ϕ4) . (2.29)

The subscript “ho” stands for “harmonic oscillator”, “re” stands for redundant. Their
meaning will be clarified shortly. We express the transformed T in the matrix form,

T = ϕ2
0~̇γ

TC~̇γ + ϕ0~̇γ
TS ~Vg, (2.30)

where ~γ = (γ+, γ−, γho)T and ~Vg = (Vg2, Vg2, Vg3)T . The matrices are,

C =

CJ CJ + C0

C0

+ Cg

1 1 0
1 1 1
0 1 1

 , (2.31)

and

S = Cg

1 1 0
1 0 1
0 1 1

 . (2.32)

With this transformation, the potential energy becomes

V = −2EJ (cos γ− cos γ+) + EL
(
(γ+ − fx)2 + γ2

ho

)
. (2.33)

We clearly see that the variable γre is the redundant variable which is decoupled from the
system. Three degrees of freedom are left. We keep using the matrix form and calculate
the vector of conjugate operators ~Pγ = (p+, p−, pho)T , with

~Pγ =
∂L

∂ ~̇ϕ
= 2ϕ2

0C~̇γ + ϕ0S ~̇Vg, (2.34)
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from which we can determine the Hamiltonian of the zero-pi qubit, given by

H =
1

4ϕ2
0

(~Pγ − ϕ0S~Vg)
TC−1(~Pγ − ϕ0S~Vg)− 2EJ cos γ− cos γ+ + EL

(
(γ+ − fx)2 + γ2

ho

)
.

(2.35)
Because we have assumed that Cg is small compared with the capacitances in the system, we
simply omit its correction to the capacitance matrix. Moreover, we define EC0 = (2e)2/C0,
ECJ = (2e)2/CJ . Note that our definition has a factor of 1/8 difference from a more
commonly used definition of the charging energy, E ′C = e2/(2C). Then we rewrite the
Hamiltonian as,

H =
1

4
ECJ (n+ − ng2 − ng3)2 +

1

4

ECJEC0

ECJ + EC0

(n− − ng2 − ng4)2

+ EL(γ+ − fx)2 − 2EJ cos γ− cos γ+ +
1

4
EC0(nho − ng3 − ng4)2 + ELγ

2
ho, (2.36)

where nα = pα/(ϕ02e) with α = {+,−, ho}. Specifically, n+ stands for the difference of
Cooper pair numbers of islands 2, 3 and 1, 4, n− stands for the difference of islands 1, 3 and
2, 4, and nho stands for the difference of islands 1, 2 and 3, 4. The gate charge is denoted
by ngj = −VgiCg/2e where j = 2, 3, 4.

The Hamiltonian can be separated into two parts. One part involves merely variables
γ− and γ+; the other part is a harmonic oscillation with of γho. The γho part captures the
resonance frequency of the LC circuit of the inductors and the capacitors and is decoupled
to the rest part of the system. The γ− and γ+ part is where the qubit levels emerge and
we will analyze in the next sections. For convenience we define the part of the transformed
Hamiltonian related to γ− and γ+ as

H+− =
1

4
ECJ (n+ − ng+)2 +

1

4
EC−(n− − ng−)2 +EL(γ+ − fx)2 − 2EJ cos γ− cos γ+, (2.37)

where ng+ = ng2 + ng3 and ng− = ng2 + ng4 , and EC− =
ECJEC0

ECJ+EC0
.

2.3 Born-Oppenheimer Approximation

Starting with this section we study the energy spectrum and wavefunctions of the lowest
levels of the Hamiltonian H+− given in equation 2.37. The approach relies on exploiting
the relation between the different energy scales in the problem for a good approximation to
the solutions. In this section we show that the Born-Oppenheimer approximation results
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in a one-dimensional problem. Next we us perturbation theory to derive the key properties
of the system. In the next section we will focus on the one-dimensional problem resulting
after we apply the BO approximation.

The circuit of the zero-pi qubit has have large inductors, large capacitors, and small
Josephson junctions. Their energy scales satisfy the relation ECJ � EJ � EL, EC0 . The
kinetic energy of γ+, which is ECJ/2, is much larger than the kinetic energy of γ−, which is
EC− ≈ EC0 . Therefore it is suitable to apply the Born-Oppenheimer approximation. We
treat the γ+ part as the rapid part in the Born-Oppenheimer approximation. We take γ−
as a parameter and solve the Schrödinger equation of γ+. With the eigenenergies Ek(γ−),
which are also known as the energy surfaces, the problem reduces to a one-dimensional
problem. More details of the Born-Oppenheimer approximation can be found in Appendix
A and [39]. Following the steps in the recipe discussed in the appendix, we choose the
basis

Ψnk(γ+, γ−) = ψnk(γ−)fk(γ+; γ−), (2.38)

where the wavefunctions fk(γ+; γ−) describes the rapid part as a function of γ+. The vari-
able γ− enters these functions as a parameter. The wavefunctions ψnk(γ−) describes the
inertial part. The rapid part wavefunctions are defined as the eigenstates of the Hamilto-
nian

H+ =
1

4
ECJ (n+ − ng+)2 + EL(γ+ − fx)2 − (2EJ cos γ−) cos γ+. (2.39)

The eigenenergy corresponding to the state k is Ek(γ−). The wavefunctions of the inertial
part are the eigenstates of the Hamiltonian

H− =
1

4
EC−(n− − ng−)2 + Ek(γ−), (2.40)

with eigenenergies given Enk. The basis 2.38 diagonalizes only a part of the full Hamil-
tonian. However, we are content to drop the reminder of the Hamiltonian because the
corrections are negligible. We will come back to a discussion of the corrections after the
analysis of the wavefunctions. Nevertheless, for completeness we give the matrix represen-
tation for the dropped terms in the Hamiltonian here:

〈Ψml|Hdrop |Ψnk〉 = −
EC−

4

(
2 〈ψml| 〈fl|

∂

∂γ−
|fk〉

∂

∂γ−
|ψnk〉+ 〈ψml| 〈fl|

∂2

∂γ2
−
|fk〉 |ψnk〉

)
.

(2.41)

A detailed derivation of the dropped Hamiltonian can be found in appendix A. Next we
apply perturbation theory on the Hamiltonian in equation 2.39 to obtain the approximation
of the wavefunction fk(γ+; γ−). We represent the wavefunctions in Fock basis {|n〉}, which
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contains the eigenstates of the Hamiltonian H = 1
4
ECJ (n+ − ng+)2 + EL(γ+ − fx)2. For

simplicity we define ~ωc =
√
ECJEL and A = (ECJ/EL)1/4/2. We can express the operators

γ+ and n+ by the ladder operators in the Fock basis

γ+ − fx =A(a+ a†) (2.42)

n+ − ng+ =i
A

2
(a† − a). (2.43)

We next rewrite the Hamiltonian in the Fock representation:

H+ = ~ωca†a− EJ cos γ−(D(iA)eifx +D(−iA)e−ifx). (2.44)

Here, we used the equation cos γ+ = (eγ+ + e−γ+)/2 and D(α) is the displacement operator
defined by D(α) = exp(αa − α∗a†). The displacement operator is an unitary operator
and obeys D(α)D(α)† = 1. When a displacement operator acting on a Fock state gives a
displaced Fock state [41]:

D(α) |n〉 = |n, α〉 =
∞∑
m=0

(
n!

m!

) 1
2

αm−ne−
|α|2
2 Lm−nn |m〉 , (2.45)

where Lnm(x) are the associate Laguerre polynomials, see [42]. In equation 2.44 a constant
term has been omitted. The first term is diagonal in the Fock basis, while the second term
leads to non-zero off-diagonal terms as well as corrections to the diagonal terms. We treat
the second term as a perturbation to the first term. Since we are only concerned with
the the lowest orders corrections to the ground state, the validity of the perturbation is
verified by the smallness of first order correction on the state, which we will discuss in the
following derivations. Before doing the calculation, we write the Hamiltonian in a compact
form as

H+ = H
(0)
+ + g(γ−)V+, (2.46)

where H
(0)
+ = ωca

†a is the zero-th order Hamiltonian, g(γ−) = −EJ cos γ−, and V =
D(iA)eifx + D(−iA)e−ifx . Moreover, we denote the ith order correction to |k〉 in the

wavefunction as |k(i)〉, and the corresponding order correction to the energy as E
(i)
k . The

first order correction to the ground state energy is

E
(1)
0 = g(γ−) 〈0(0)|V+ |0(0)〉 = −2g(γ−) cos fxe

−A
2

2 , (2.47)

where we used the property of the displacement operator in equation 2.45. Based on the
same property, the first order correction to the ground state wavefunction is

|0(1)〉 =
∞∑
n=1

〈n(0)|V |0(0)〉
E

(0)
0 − E

(0)
n

|n(0)〉 = −2g(γ−)

~ωc

∞∑
n=1

cos
(nπ

2
+ fx

) e−A2

2 An

n
√
n!
|n(0)〉 . (2.48)
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Next we calculate the second order correction on the energy, given by

E
(2)
0 = 〈0(0)|V+ |0(1)〉 = −4g(γ−)2

~ωc

∞∑
n=1

cos2
(nπ

2
+ fx

) e−A2
A2n

n · n!
. (2.49)

The series can be simplified to a compact form using Mathematica symbolic calculation
[43]:

E
(2)
0 = −2g(γ−)2

~ωc
e−A

2 (
2 cos2 ϕ(γEu + 2 log(A)) + <(Γ(0,−A2) + cos(2fx)Γ(0, A2))

)
,

(2.50)
where the Euler constant γEu ≈ 0.577, and the incomplete gamma function is defined as
[44]

Γ(a, x) ≡
∫ ∞
x

ta−1e−tdt. (2.51)

In the regime of large A, the factor e−A
2

leads to a significant suppression of E
(2)
0 . In the

bracket, we can safely omit the terms that are in the order of O(log(A)) or less. As a

result, the main contribution to E
(2)
0 is 2g(γ−)2e−A

2<(Γ(0,−A2))/~ωc. A good estimation
on the incomplete gamma function is given by

<(Γ(0,−A2)) = −
∫ ∞
−A2

e−t

t
dt = −

∫ ∞
0

eA
2 e−u

u+ A2
du ≈ −e

A2

A2
. (2.52)

Accordingly we estimate

E
(2)
0 ≈ −

2g(γ−)2

~ωcA2
= −8E2

J

ECJ
cos2 γ−. (2.53)

The estimation can be used for a quick rough calculation. For the comparison with the
simulation in section 2.5 we keep using equation 2.50. The first and the second order energy
corrections are sufficient for the further analysis. Nevertheless, we continue to the second
order state correction and the third order energy correction for a better understanding of
the system. The second order correction of the state is formally given by

|0(2)〉 =
∞∑
n=1

|n(0)〉
E

(0)
0 − E

(0)
n

(
〈n(0)|V+ |0(1)〉+ E

(1)
0 〈n(0)|0(1)〉

)
− 1

2
〈0(1)|0(1)〉 |0(0)〉 . (2.54)
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We now evaluate the first term in the bracket:

〈n(0)|V+ |0(1)〉 (2.55)

=
∞∑
m=1

1

E
(0)
0 − E

(0)
m

〈n(0)|V+ |m(0)〉 〈m(0)|V+ |0(0)〉

=−
∞∑
m=1

1

~ωcm
(
eifx 〈n(0)|m(0), iA〉+ e−ifx 〈n(0)|m(0),−iA〉

)
〈m(0)|V+ |0(0)〉

=−
∞∑
m=1

4e−A
2
An

~ωcm
√
n!

cos
(

(n−m)
π

2
+ fx

)
cos
(mπ

2
+ fx

)
Ln−mm (A2). (2.56)

The evaluation of the other terms is relatively easy. We apply the property of the displace-
ment operator in equation 2.45 and the result of the first order correction. The second
order correction to the ground state is,

|0(2)〉 =
2g(γ−)2e−A

2

ω2
c

{
∞∑
n=1

(
2An

n2
√
n!

)
×(

∞∑
m=1

n

m
cos
(

(n−m)
π

2
+ fx

)
cos
(mπ

2
+ fx

)
Ln−mm (A2)

+ cos
(nπ

2
+ fx

)
cos fx

)
|n(0)〉 −

∞∑
m=1

A2m

m2m!
cos2

(mπ
2

+ fx

)
|0〉(0)

}
. (2.57)

Finally, the third order energy correction can be calculated as,

E
(3)
0 = 〈0(0)|V+ |0(2)〉 − E(1)

0 〈0(0)|0(2)〉 − E(2)
0 〈0(0)|0(1)〉

=−
∞∑
n=0

2g(γ−) cos
(nπ

2
+ fx

) e−A2

2 An√
n!
〈n(0)|0(2)〉 . (2.58)

We make a few remarks. First, the ith order energy correction is O(g(γ)i), therefore
O(cos(γ−)i), which means these energy corrections are closely related to the Fourier coeffi-
cient of the potential energy surface. Second, the first order energy correction is suppressed
by exp(−A2

2
), while the second order energy correction is not. More generally, the correc-

tions in odd orders are suppressed, while the even orders are not. Hence, the potential
energy surface is basically π-periodic with a small 2π-periodic correction. We exclusively
study the properties of this type of potential in the next section.
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At the end of this section, for a complete understanding to the system, we solve the
perturbation problem from another perspective. We choose the coherent states basis
{|n(iA)〉}, where n is an integer and i is the imaginary unit, and we neglect the over-
laps between the states, which is in order of O(exp(−A2/2)). This method misses some
subtle structure because it approximate an overcomplete basis as a complete basis. How-
ever, it provides an intuitive picture to the problem. In the coherent state basis, we rewrite
the Hamiltonian in equation 2.44,

H+,co =
∞∑

n=−∞

{
n2~ωcA2 |n(iA)〉 〈n(iA)|

−EJ cos γ−
(
|n(iA)〉 〈(n− 1)iA| eifx + |n(iA)〉 〈(n+ 1)iA| e−ifx

)}
. (2.59)

The Hamiltonian is identical to the Hamiltonian of a Josephson junction, where the co-
herent state |n(iA)〉 corresponds to the Cooper pair number state |n〉. The Hamiltonian
is similar to the Hamiltonian of a Josephson junction, where the capacitance energy is
2A2~ωc and the Josephson energy is EJ cos γ−. Because 2~ωcA2 = ECJ/2� EJ , the spec-
trum of the system is the typical spectrum of a Cooper pair box qubit. The ground state
energy of the Cooper pair box is given by the eigenvalue of Mathieu function [45]. The
first eigenvalue can be expanded in terms of EJ/(~ωcA2) as

E0,co = ~ωcA2

(
2

(
EJ cos γ−
~ωcA2

)2

+
7

2

(
EJ cos γ−
~ωcA2

)4

+O

((
EJ cos γ−
~ωcA2

)6
))

. (2.60)

If we only take the lowest nonzero order, the energy reduces the result in equation 2.53.
Note that the expansion of the energies does not contain the odd orders, because those
terms correspond to the overlaps of the coherent states. The odd orders of the energy
expansion are small compared to nearby even order expansion coefficients, but they play a
very important role in the spectrum of the zero-pi qubit, which we will discuss in the next
section. The disappearance of the odd orders makes this method unsuitable for further
analysis.

In conclusion, we applied the BO approximation and used perturbation theory to cal-
culate the energy surface. We reduced the system to a one-dimensional problem specified
by

H− =
1

4
EC−(n− − ng−)2 + V−(γ−), (2.61)

where V−(γ−) =
∑∞

n=0E
(n)
0 . The energy coefficient E

(n)
0 is the nth order correction to the

energy derived from perturbation theory.
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2.4 Tight-Binding model

In the previous section we used the BO approximation to effectively reduce the system
to a one-dimensional problem, described by equation 2.61. In this section, we study the
properties of this one-dimensional problem and find the spectrum structure of the zero-pi
qubit.

The potential of the one-dimensional system consists of a sum of energy corrections. The
sequence has two important properties. Firstly, the ith order correction is associated with
(cos γ−)i. Secondly, the coefficients of odd orders are much smaller than coefficients of even
orders. To capture the major character of the potential while not making the calculation
too complicated, we keep the potential up to the second order. This is equivalent to keeping
the lowest two nonzero Fourier components of the potential. We refer to the approximate
Hamiltonian as a truncated Hamiltonian,

H−,truncated =
1

4
EC−(n− − ng−)2 + V−,1 cos γ− + V−,2 cos(2γ−), (2.62)

where V−,1 = E
(1)
0 / cos γ−, V−,2 = E

(2)
0 /(2 cos2 γ−), and we have neglected the constant term

generated in the transformation 2 cos2(γ−) = cos(2γ−)+1. Because we have |V−,1| � |V−,2|,
the potential is mostly π-periodic and is modified by a 2π-periodic correction. Thus we
solve the problem starting with the π-periodic component of the potential, followed by
considering the 2π-periodic part. The solution is obtained using the tight-binding model.

The tight-binding approximation is widely used in condensed matter physics for solving
for Bloch wavefunction in the periodic potential of crystal. The approximation exploits
the property of small tunneling between wells, and assumes the Bloch wave is simply the
superposition of localized states of each well. More information of the tight-binding model
can be found in [46].

2.4.1 Pi periodic potential and WKB approximation

In this subsection we solve a simplified version of the problem where we set V−,1 = 0 in
equation 2.62. The Hamiltonian of this problem is given by

H−,simplified =
1

4
EC−(n− − ng−)2 + V−,2 cos(2γ−). (2.63)

The potential is in the form of simple sinusoidal function, as shown in figure 2.4. We expect
Bloch wave solutions form a band structure. The periodicity of the potential is π. Based
on the properties of Bloch functions [47], the edges of the first Brillouin zone are ±1.
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The circuit elements satisfy the relation 4E2
J/ECJ � 1

2
EC0 , which means the barrier

between wells in significantly larger than the kinetic energy of lowest states. The wave-
functions for the lowest states are localized within the wells and it is suitable to apply the
tight-binding approximation. The band structure is then derived from taking the overlap
of neighboring wavefunctions as a perturbation.

-π 0 π

-|V-,2|

0

|V-,2|

γ-

P
ot
en
ti
al

Figure 2.4: The figure depicts the potential in the equation 2.63. The potential is π-
periodic.

Firstly we solve the single well problem to obtain the wavefunction. We select the single
well as shown in the figure 2.5, which is described by the potential function,

V R
−,single(γ−) =

{
V−,2 cos(2γ−), |γ− −R| ≤ π/2,

−V−,2, elsewhere,
(2.64)

with R = nπ and n an integer. Note that V−,2 < 0. To find the wavefunction in this
well, we take the WKB semi-classical approximation [48]. We divide the potential into
five parts, as shown 2.5. In the center part (III), the potential is close to a quadratic
function, and thus the wavefunction is close to the solution to a harmonic oscillator, which
we use as a starting point of the perturbation approximation. In the region II and IV,
where we refer as shoulders, the potential is significantly deviate from quadratic and the
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wavefunction deviates from the harmonic oscillator solution. The connecting points of the
center and the shoulders are referred as ±γconnect. We use the WKB approximated solution
in shoulder regions and connect them to the solution in the center to fulfill the continuity.
Outside the well, where |γ− − R| > π, the potential is flat and the wavefunction becomes
a simple exponential decay function.

Figure 2.5: A single cell centered at γ− = 0. The blue solid line is the single cell potential,
while the potential is plotted in the dashed line. A cell is divided into five parts: two
outside parts, two shoulder regions and one center part.

In the vicinity of γ− = 0, we expand the potential in orders of γ−, and keep up to the
second order as V−,2(1− 2γ2

−). The quadratic term of the potential, with the kinetic term
1
4
EC−(n− − ng)2, forms a Hamiltonian of a harmonic oscillator. For convenience we define

the energy ratio,

η =
|4V−,2|
|EC−/2|

=
−8V−,2
EC−

. (2.65)

We note that η � 1. The ground state wavefunction is easily obtained as,

ψWKB, center =
( η
π2

) 1
8

exp

(
−√η

2
γ2
−

)
, (2.66)

with energy EWKB = V−,2(1 − 2/
√
η). Then we need to determine the connecting point

γconnect. The connection point should fulfill two requirements. First, it should be sufficiently
small such that the harmonic oscillator ground state approximates the wavefunction in the
center part. Second, it should be larger than the “turning point”, where the potential
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energy approaches the state energy and the WKB approximation fails. The turning point
is determined by solving the equation,

V−,2 cos(2γturn) = EWKB = V−,2

(
1− 2
√
η

)
. (2.67)

Because η is very large, the solution to the above equation satisfies γturn ≈ 1/η1/4, which
is a small quantity. We can therefore select the connecting point γconnect in the range
(γturn, 1) such it satisfies the above requirements. However, as we will see in the following,
we do not need to specify γconnect because the results do not explicitly depend on γconnect.
Before we present the details of the derivation, we review the two requirements of γconnect.
The first requirement guarantees the validity of approximating the wavefunction by ground
state of harmonic oscillator. Moreover, it allows us to (approximately) equal 1− 2γ2

connect

and cos(2γconnect). The second requirement brings us the relation V R
−,single(γ−) − V−,2 �

EWKB − V−,2.

The WKB approximation is elaborated in many text books. We follow the steps in
[48]. We firstly define

k(γ−) =

(
4

EC−
(EWKB − V−,2 cos(2γ−))

) 1
2

. (2.68)

The wavefunction in the WKB approximation in the shoulder area γconnect < γ− < π/2 is
given by

ψWKB,shoulder =
A√
k(γ−)

exp

(
i

∫ γ−

γconnect

drk(r)

)
, (2.69)

where A is a constant determined by the continuity of the wavefunctions at the connecting
point. On one side of the connection point, the solution is the ground state of harmonic
oscillator. The wavefunction at the connecting point is,

ψWKB,center(γconnect) =
( η
π2

) 1
8

exp

(
−√η

2
γ2

connect

)
. (2.70)

On the other side, the wavefunction from the WKB approximation at the connecting point
is,

ψWKB,shoulder(γconnect) =
A

k(γconnect)
1
2

. (2.71)

Therefore, we can determine the value of A,

A =
( η
π2

) 1
8

exp

(
−
√
η

2
γ2

connect

)
k(γconnect)

1
2 . (2.72)
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After substituting A into equation 2.69 we obtain the expression of the wavefunction

ψWKB,shoulder(γ−) =
( η
π2

) 1
8 k(γconnect)

1
2

k(γ−)
1
2

exp

(
i

∫ γ−

γconnect

drk(r)−
√
η

2
γ2

connect

)
. (2.73)

We first calculate the exponential term. The factor on the exponential can be significantly
simplified based on the two requirements of γconnect. Firstly, γconnect fulfills the relation
V R
−,single(γ−) − V−,2 � EWKB − V−,2, therefore we can expand the integration term on the

exponential,

i

√
4

EC−
(EWKB − V−,2 cos(2r)) ≈ −√η

(
sin r − 1− EWKB/V−,2

4 sin r

)
. (2.74)

We then substitute EWKB = V−,2(1 − 2/
√
η) into the equation and calculate the integral

in the exponential in equation 2.73. The factor in the exponential becomes

√
η(cos(γ−)− cos(γconnect)) +

1

2
log

(
tan(γ−/2)

tan(γconnect/2)

)
−
√
η

2
γ2

connect. (2.75)

We expand cos(γconnect) to the second order and arrive at the simplified form of the expo-
nential term, given by (

tan(γ−/2)

tan (γconnect/2)

) 1
2

exp (
√
η(cos(γ−)− 1)) . (2.76)

Now we turn to the pre-factor in equation 2.73. We simplify it by the relation

k(γconnect)

k(γ−)
=

(
EWKB − V−,2 cos(2γconnect)

EWKB − V−,2 cos(2γ−)

) 1
2

≈
(

1− cos(2γconnect)

1− cos(2γ−)

) 1
2

. (2.77)

Here, the approximation is valid based on the relation V R
−,single(γ−) − V−,2 � EWKB −

V−,2. To further simplify the expression, we apply the equation 1− cos(2x) = 2 sin2(x) =
8 sin2(x/2) cos2(x/2), and approximate cos(x) ≈ 1 when x = γconnect. We can write the
final form of the WKB approximation as

ψWKB,shoulder(γ−) =
( η
π2

) 1
8 exp(

√
η(cos(γ−)− 1))

cos(γ−/2)
. (2.78)

When |γ−| > π/2, the potential is a constant and the wavefunction decays exponentially.
The decay rate is determined by

√
(−V−,2 − EWKB)/(EC−/4) =

√
η −√η. We once again

37



use the continuity of the wavefunction to determine the amplitude. At the point γ− =
(π/2)−, the amplitude is,

ψWKB,shoulder(π/2) =

(
16η

π2

) 1
8

exp(−√η). (2.79)

Therefore, the wavefunction outside the well is described by,

ψWKB,outside(γ−) =

(
16η

π2

) 1
8

exp

(
−√η −

√
η −√η(γ− − π/2)

)
. (2.80)

Figure 2.6: The potential and its solution based on WKB approximation in one cell. The
blue line is the potential. The red line is the wavefunction.

In this subsection we have derived the WKB approximation of the wavefunction in a
single well. The wavefunction is a piecewise function defined as

ψWKB(γ−) =
( η
π2

) 1
8 ×


exp

(
−√η

2
γ2
−

)
|γ−| ≤ γconnect

exp(
√
η(cos(γ−)− 1))/ cos(γ−/2) γconnect < |γ−| ≤ π/2√

2 exp
(
−√η −

√
η −√η(|γ−| − π/2)

)
π/2 < |γ−|.

(2.81)
The wavefunction is plotted in figure 2.6.

We next make a few remarks on this result. Firstly, it is important to mention that the
functions in each interval are independent on the connecting point γconnect. We achieve this
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result by requiring γconnect to be small enough such that we are content to keep the lowest
orders of Taylor expansion of cos(γconnect), and sufficiently large when compared with the
turning point γturn. Secondly, one may consider the straightforward perturbation method of
cos(2γ−) potential instead of the WKB approximation. However, we emphasize the impor-
tance of the accuracy of the tail part of the wavefunction. The band structure is sensitive
to the overlap of the neighboring wavefunctions, where the tail part is important. Pertur-
bation theory results in a finite superposition of Fock states, which have exp(−Rx2) decay
and significantly deviate from the exponential decay. Therefore the WKB approximation
is better than the direct perturbation approximation. The third remark is concerned with
the energy approximation. Because the exponential decay rate is associated with the en-
ergy of the state, a small modification can lead to a large error. To estimate the error, we
consider the upper bound and lower bound on the energy. The upper bond is exactly the
energy Eub = EWKB, because the parabolic potential we used is no lower everywhere than
the single well. Thus the energy of exact solution is less than EWKB. The lower bond can
be given by the Mathieu function solving equation 2.63. Similarly, because the periodic
potential is no larger everywhere than the single well, the energy obtained from periodic
potential must be smaller than or equal to the energy of ground state of a single well. The
lower bound, which is given by the Mattieu function [45] in a periodic potential, is

Elb = V−,2

(
1− 2
√
η

+
1

4η
+O

(
1

η3/2

))
. (2.82)

Therefore the error made in estimating the energy is less than V−,2/4η. The maximum |γ−|
we are interested is 3π/2, when we consider the nearest neighbor effect. At this value, the
upper bound of the error on the ratio of the amplitudes is given by

r =
exp

(
−3π

2

√
−V−,2−Eub

EC−/4

)
exp

(
−3π

2

√
−V−,2−Elb

EC−/4

) ≈ exp

(
3π

32

1√
η −√η

)
. (2.83)

Because the circuit has the relation 2|V−,2| � EC− , we have η > 4, and consequently
r < 1.23. This ratio is in the worst-case scenario. In fact, η can easily achieve 50 and limit
the erroneous ratio within 1.05, which is acceptable.

2.4.2 Pi periodic potential and tight-binding approximation

In this subsection we establish the tight-binding model based on the wavefunction we
obtained previously. Recall the equation 2.63, which defines the problem,

H−,simplified =
1

4
EC−(n− − ng−)2 + V−,2 cos(2γ−). (2.63 revisited)
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We assume that the superposition of the local ground states

ψk =
∑
R

eikRψWKB(γ− −R), (2.84)

where R = nπ with integer n, satisfies the Schördinger equation

H−,simplified |ψk〉 = Ek |ψk〉 . (2.85)

Here, the quasi-momentum k is confined to the first Brillouin zone, −1 < k < 1. Associated
with k, Ek and ψk are the eigenenergy and the wavefunction respectively. We rewrite the
Hamiltonian, emphasizing the single well potential in equation 2.64, as

H−,simplified =
1

4
EC−(n− − ng−)2 + V R=0

−,single(γ−) + UR=0, (2.86)

where the single where potential describes the well located between −π/2 to π/2 while
elsewhere is constant. The complementary potential U is obtained as the total potential
without that of a single well:

UR=0 = V−,2 cos 2γ− − V R=0
−,single(γ−). (2.87)

We take the scalar product of equation 2.85 with |ψWKB(γ−)〉. We obtain

EWKB(1 + γ) + α + β = Ek(1 + γ). (2.88)

Here we use the quantities α, β and γ which are defined as

α = 〈ψWKB(γ−)|U |ψWKB(γ−)〉 , (2.89)

β = 〈ψWKB(γ−)|U |ψWKB(γ−)〉, (2.90)

and
γ = 〈ψWKB(γ−)|ψWKB(γ−)〉 , (2.91)

with |ψWKB(γ−)〉 = |ψk〉 − |ψWKB(γ−)〉. We have assumed that the wavefunction at each
well is localized, therefore we neglect the parameter γ. In addition, we only consider
the nearest neighbor effect in β. Also note the compensating potential U is zero when
|γ−| < π/2. Thus the quantity α can be neglected. We then obtain the expression of Ek
as,

Ek = EWKB + β. (2.92)
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We are content to keep the nearest neighbor effect and drop other terms, in which case β
can be simplified to

β = 2V−,2 cos(kπ)

∫ 3π/2

π/2

ψ∗WKB(γ−)(cos(2γ−) + 1)ψWKB(γ− − π)dγ−. (2.93)

The integral is easy to calculate based on the result of WKB approximation. We have

β ≈ − cos(kπ)
16√
π

V−,2

η
1
4

exp(−2
√
η), (2.94)

where we approximated EWKB ≈ −V−,2. Therefore we obtain the bandwidth of the first
band, given by

w = − 32√
π

V−,2

η
1
4

exp(−2
√
η). (2.95)

We see that with the absence of the 2π-periodic potential term V−,1 cos(γ−), the bandwidth
is exponentially suppressed by exp(−2

√
η). In figure 2.7 we plot the energy in the first

Brillouin zone.
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Figure 2.7: The first band of the π-periodic potential. The energy is scaled with w, which
is defined in equation 2.95.
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In superconducting materials, the wavefunction has to be periodic with period 2π. In
the frame of Bloch solution and in the absence of the offset charge this constrains the
quasi-momentum to be an integer. Because the first Brillouin zone extends from −1 to 1,
there can be two states in the first band. If the offset charge ng− = 0, the two states will
be k = 0 and k = ±1. In the case where ng− 6= 0, the solution to the Schödinger equation

can be obtained by apply the gauge transformation ψ̃ = eing−γ−ψ and ψ̃ is 2π-periodic.
The relative quasi-momentum of Bloch wave is −ng− and −ng− ± 1. In either case where
the offset charge ng− is zero or not, the first band contains and only contains two solutions.
The second band is near the first excited state energy of a single well and stays very far
from the first band. Because the lowest two states are well-separated from other states,
and the energy gap of two states is very small compared to any other energy scales in the
system, we conclude that the system has a nearly-degenerate ground state.

The key to forming the nearly-degenerated states structure is to have the π-periodic
potential. In the classical superconduction qubits, such as the transmon qubit and the flux
qubit, the potential is 2π-periodic, which is consistent with the wavefunction periodicity.
Each band contains one state, and the qubit levels rely on the different levels of bands.
However, in the zero-pi qubit, the symmetry of the circuit leads to a translation symmetry
of π rather than 2π. As a result, the periodicity of the potential is reduced to π and each
band contains two states.

Until now, we only considered the π-periodic part and omitted the 2π-periodic part
of the potential. As discussed above, the 2π-periodic part breaks the nearly-degenerate
subspace and shifts the energy gap. Fortunately, the 2π-periodic component is much
smaller than the π-periodic component and can be treated by perturbation theory. The
Hamiltonian containing the π-periodic part will be studied in the next subsection.

In the last part of this subsection, we check the validation of the WKB and tight-
binding approximation. The solution to the problem defined by the Hamiltonian 2.63 can
be expressed in terms of Mathieu function theory. The width of the first band can be found
in the table [45]. The width expansion in orders of 1/

√
η is

wMathieu = − 8√
π

V−,2

η
1
4

exp(−2
√
η)(1 +O(1/

√
η)). (2.96)

Compared with the result we obtained before, the approximation result perfectly matches
the analytical result to the first order, as expected.
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2.4.3 2Pi periodic potential and tight-binding approximation

After analyzing the Hamiltonian with merely the π-periodic component in the previous
subsection, we include now the 2π-periodic component. Recall the Hamiltonian in equation
2.62,

H−,truncated =
1

4
EC−(n− − ng−)2 + V−,1 cos γ− + V−,2 cos(2γ−), (2.62 revisited)

where the energy scales satisfy the relation |V−,2| � EC− � |V−,1|. Because |V−,1| is
very small compared to |V−,2|, we simply keep using the wavefunction derived in WKB
approximation result with V−,1 = 0, and apply the perturbation theory on the tight-binding
model.
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Figure 2.8: The potential in equation 2.62. The value of |V−,1| has been exaggerated
compared to typical values for realistic parameters. The external flux is set to be 0. The
presence of V−,1 changes the energy of lowest point of each well, while the peak energy of
the barrier does not change. We label the wells located at 2nπ with “A”, and (2n + 1)π
with “B”, where n is an integer. The red box indicates a single cell of this 2π-periodic
potential.

As shown in the figure 2.8, the basic cell has the width of 2π and contains two different
wells. We therefore apply the tight-binding approximation for a two-atom basis. We divide

43



the wells into two groups. One group, which we label by “A”, are wells located at 2nπ,
with n an integer. In the group A, the ground state energy is

EA = EWKB + V−,1. (2.97)

We label the other group “B”, with ground state energy

EB = EWKB − V−,1. (2.98)

According to the tight-binding approximation, we assume the solution to the equation 2.62
is

ψk =
∑
R

eikR
(
AkψWKB(γ− −R) + eikπBkψWKB(γ− −R− π)

)
, (2.99)

where k is the quasi-momentum, R = 2nπ with integer n is the position of the cell, and
Ak, Bk are the coefficients of related wavefunctions in different groups. Note that the
quasi-momentum k has a range of [−1/2, 1/2]. Also, we denote the energy as Ek.

In order to obtain the band information, we apply 〈ψWKB(γ−)| and 〈ψWKB(γ− − π)| to
the left of the equation H−,truncated |ψk〉 = Ekψk, and keep the effect of nearest neighbor
wells. We obtain two equations:

(EWKB + V−,1)(Ak +Bkγ) + Akα +Bkβ = Ek(Ak +Bkγ), (2.100)

and
(EWKB − V−,1)(Bk + Akγ) +Bkα + Akβ = Ek(Bk + Akγ). (2.101)

Here we use α, β and γ to write the equations in compact form. They are defined slightly
differently from the quantities defined in the previous subsection:

α = 〈ψWKB(γ−)|U |ψWKB(γ−)〉 , (2.102)

β = 2 cos(kπ) 〈ψWKB(γ−)|U |ψWKB(γ− − π)〉 , (2.103)

γ = 2 cos(kπ) 〈ψWKB(γ−)|ψWKB(γ− − π)〉 . (2.104)

Here, we denote the compensating potential as U = V−,2 cos 2γ− − V R=0
−,single(γ−), where the

small component V−,1 has been neglected. Again, because the wavefunctions are localized
in the wells, we can safely drop out terms with γ. Moreover, we can neglect α because the
wavefunction ψWKB(γ−) is localized in the cell, where the compensating potential U = 0.(

EWKB + V−,1 β
β EWKB − V−,1

)(
Ak
Bk

)
= Ek

(
Ak
Bk

)
. (2.105)
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The solution to this equation defines a two-level system, which encodes a qubit. Because
EWKB behaves as the zero-point energy, we can disregard it. We denote the two eigenvalues
as E0 and E1. They are given by:

E0 = −
√
V 2
−,1 + β2 (2.106)

and

E1 = +
√
V 2
−,1 + β2. (2.107)

Since the wavefunction in the superconducting circuit has to have a periodicity of 2π,
the quasi-momentum k is determined by the offset charge ng,−. We discuss this result in
two cases. In the first case we set the bias flux bias such that cos fx = 0, thus V−,1 = 0.
The potential is π-periodic, which we have discussed in the previous subsection. For
completeness we restate the conclusion here: when V−,1 vanishes, the system takes two
states in its lowest band. The third state is far away from the two-level system, which
leads to a nearly degenerate subspace. The eigenfunctions consist of localized ground
states of each well. The band is shown in figure 2.9.
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Figure 2.9: The band structure when the external flux fx = π/2. We define β0 =
|β/ cos(kπ)| for simplicity. The dimensionless circuit parameters are EJ = 1, ECJ = 20,
EL = 1/150 and EC = 1/35. This band is identical to the band shown in the figure 2.7.
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The second case we are interested in is |V−,1| � |β|. This relation can be equivalently
expressed by

2EJ | cos fx| exp

(
−1

8

√
ECJ
EL

)
� | cos(kπ)| 4√

π

|V−,2|
η

1
4

exp(−2
√
η), (2.108)

where η ≈ 128E2
J/(ECJEC) and V−,2 ≈ 4E2

J/ECJ . The relation is automatically fulfilled
when cos fx is different of zero even by small amounts due to the huge difference in the
exponential factor. To be more specific, if we take the dimensionless circuit parameters
EJ = 1, ECJ = 20, EL = 1/150 and EC = 1/35, the threshold fx,threshold which leads to
|V−,1| ≥ 10|β| is

|fx,threshold − π/2| = 5.4× 10−4. (2.109)

In this regime, the energy gap is

E1 − E0 ≈ 2V−,1 +
β2

V−,1
. (2.110)

The band is plotted in figure 2.10.
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Figure 2.10: The band structure when the external flux fx = 0. The dimensionless circuit
parameters are EJ = 1, ECJ = 20, EL = 1/150 and EC = 1/35. The dependence on the
quasi-momentum is so small that it is invisible in the figure.
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We note that compared to the first case, the band is shorter and only one state is
possible for each band. The gap is of the order of V−,1, which is significantly larger than
the gap in the first case, which is of the order of β. Compared to the gap, the bandwidth
is negligible. Although the gap of the lowest two states is larger, we can still take the two
levels as a nearly degenerate subspace. The wavefunction in this case is very different from
the previous one. To have a compact expression, we define

cot 2θ =
V−,1
β
. (2.111)

The two solutions are, (
Ak,1
Bk,1

)
=

(
sin θ
cos θ

)
, (2.112)

and (
Ak,2
Bk,2

)
=

(
cos θ
sin θ

)
. (2.113)

When |V−,1| � β, θ approaches π and either Ak or Bk is small in the solution. Therefore,
the solution consists of ground state of wells in R = 2nπ or R = 2nπ+π, with n an integer.

When |V−,1| is comparable to |β|, the band structure is shown in figure 2.11. However,
the external flux fx is hard to confine in such a small region in experiment.
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Figure 2.11: The band structure when the external flux fx = π/2 − 1 × 10−5. We define
β0 = |β/ cos(kπ)| for simplicity. The dimensionless circuit parameters are EJ = 1, ECJ =
20, EL = 1/150 and EC = 1/35.
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In this section we derived a very important equation to the zero-pi qubit. Equation
2.105 gives the energies of the two-fold nearly-degenerate subspace of the zero-pi qubit.
The two-level system is controlled by the external flux fx and the offset charge ng− . We
will discuss the properties of noise in the next sections.

Before concluding, we review the Born-Oppenheimer approximation, which was one
important step in these calculations. We can now check whether dropped terms are truly
negligible. We recall the equation

〈Ψml|Hdrop |Ψnk〉 = −
EC−

4

(
2 〈ψml| 〈fl|

∂

∂γ−
|fk〉

∂

∂γ−
|ψnk〉+ 〈ψml| 〈fl|

∂2

∂γ2
−
|fk〉 |ψnk〉

)
.

(2.41 revisited)
Here, the state |fk〉 and the state |ψnk〉 describes the wavefunction of γ+ and γ− respectively.
We only need to consider the dropped term in the nearly degenerate subspace, because
other states are far from the qubit states in the spectrum, and tunneling between those
states and the qubit states are suppressed by the large energy gap. When dealing with the
nearly-degenerate subspace, we set k = l = 0, and the integration only goes near γ− = nπ
with an integer n because the wavefunctions are localized in the wells. Moreover, the
wavefunction |f0〉 depends on cos(γ−), which has zero derivative around nπ. Therefore we
neglect the first term in the bracket. For the second term in the bracket, 〈f0| ∂2/∂γ2

− |f0〉 is
a slow varying term and can be taken as a constant in the wavefunction integration. The
second term becomes 〈ψm0|ψn0〉 and has no net contribution to the Hamiltonian. These
considerations establish the validity of the Born-Oppenheimer approximation.

2.5 Simulations

We pause the theoretical analysis and turn our attention to the numerical simulation in this
section. The numerical results on one hand verify the derivations we have had above. And
more importantly, they provide a visualization of the spectrum and the wavefunctions of
the qubit, which help us deepen the understanding of the system. This section is planned
as following: firstly we introduce the methods concerned with the basis and the matrix
elements. Secondly, we show the numerical results on the spectrum and the wavefunctions,
and compare them with the theoretical result we obtained in the previous section.

Essentially we aim at solving the Schrödinger equation for the Hamiltonian defined by
equation 2.37,

H+− =
1

4
ECJ (n+ − ng+)2 +

1

4
EC−(n− − ng−)2 + EL(γ+ − fx)2 − 2EJ cos γ− cos γ+.

(2.37 revisited)
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A conventional method is to express the Hamiltonian in the Cooper-pair number basis
{(n+, n−)}. The basis is discrete and can be naturally expressed in matrix form. However,
because of the existence of the inductance, the 2π-periodicity of γ+ is broken and hence
the number operator n+ does not have an integer spectrum. Instead, we consider the
Fock basis to express the n+ part, leading to a discrete representation. The Fock basis
corresponds to the eigenstates of the Hamiltonian defined by

H =
1

4
ECJ (n+ − ng+)2 + EL(γ+ − fx)2. (2.114)

We label each eigenstate by a positive integer nho. Therefore, we can use the integer pairs
(nho, n−) to label the state in the basis. Expressed in the {(nho, n−)} basis, the Hamiltonian
becomes,

H+− = ~ωca†a+
1

4
EC−(n− − ng−)2 − 1

2
EJ(b+ b†)(D(iA)eifx +D(−iA)e−ifx). (2.115)

Here, the ladder operators a and a† are associated with the Fock state in γ+ space, while
operators b and b† shifting the state label n− by -1 and 1 respectively. Note that the
operator b is not a ladder operator. Rather, it follows the rule

b |n−〉 = |n− − 1〉 . (2.116)

In the last term of the Hamiltonian H+− in equation 2.115, the displacement operator
D(iA) is defined as,

D(α) = eαa−α
∗a† , (2.117)

and its value in matrix can be determined with the help of equation 2.45, which we restate
here,

D(α) |n〉 = |n, α〉 =
∞∑
m=0

(
n!

m!

) 1
2

αm−ne−
|α|2
2 Lm−nn |m〉 . (2.45 revisited)

Also we used ~ωc =
√
ECJEL, and A = (ECJ/EL)1/4/2 in the expression of the Hamiltonian

to help simplify the equation. The matrix elements can be straightforwardly calculated.

To obtain reliable results, the size of the matrix has to be carefully chosen. Ideally, an
infinite large matrix can fully reflect the reality. However, a compromise must be reached
which reflects the limits of computational power. In this problem, we truncate the high
energy states, because we are interested in the lowest states, and therefore the basis states
with high energy are expected to play a small role. We use two matrices with different size
to represent the subspaces γ+ and γ−. We intentionally set the size differently to maximize
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the accuracy while keeping the computing task manageable. The sizes are determined
according to the convergence of the simulation result. We examine the energy gap of the
lowest two states at fx = π/4 and ng− = 0, which is the smallest energy gap we are
interested. We plot the energy gap against the matrix sizes of γ+ and γ−, which is shown
in figure 2.12. The energy gap displays a negligible change with basis size when the matrix
sizes are larger than 70 and 30 respectively. Practically, we set the sizes of matrices to be
100× 100 for both γ− and γ+, because the time of computation for these sizes is less than
1 s, which does not constrain us.

Figure 2.12: The energy gap between the lowest two states. The dimensionless circuit
parameters are EJ = 1, ECJ = 20, EL = 1/150, and EC = 1/35. We set external flux
fx = π/2 thus V−,1 vanishes. We also set the offset charge ng− = 0. The gap converges to
3.93× 10−7 when the matrix size is larger than 70 and 30 respectively.

There are four energies that need to be specified: Josephson energy EJ , capacitance
energy of the Josephson junction ECJ , capacitance energy of the capacitors EC , and induc-
tance energy EL. In the numerical simulation we use the dimensionless energies: EJ = 1,
ECJ = 20, EL = 1/150, and EC = 1/35. These parameters can be achieved by a circuit
with 2× 10−3

µm2 Niobium Josephson junctions [49]. The critical current density is 64.4
µA/µm2 and the capacitance density is 60.5 fF/µm2 [50]. The capacitance of the large
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capacitor is thus 84.74 fF, which is achieved in the transmon qubit [51]. The inductance
of the inductor is 0.38 µH. The inductance is slightly larger than but comparable to the
reported value in a fluxonium qubit [12]. The numbers are selected based on three consid-
erations. First, they are viable with the current technologies. Second, parameters should
be in the range that the approximations are satisfied. Third, the circuit achieve a good
protection to the qubit.

With the selected parameters of circuit elements, we simulate the spectrum and wave-
functions with different combinations of fx and ng− . Because the γho is isolated from γ+

and γ−, we do not include it in the calculation. Fixing the offset charge ng− = 0, we plot
the spectrum of lowest six states against the external flux in the figure 2.13.
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Figure 2.13: The energy spectrum, including the lowest six levels. We fix the offset charge
ng− = 0 and plot over the external flux.

The energy gap between the first excited state and the second excited state is ∼ 6.25
GHz, while the theory gives ∆E02 ≈

√
2|EC−V−,2| = 7.12 GHz. To further compare the

simulation result with the approximation, we plot the energy gap between the first two
states over external flux in figure 2.14.
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Figure 2.14: The energy gap of the lowest two levels against the external flux. The offset
charge is fixed ng− = 0. The blue lines shows the result of simulation, and the red line
shows the result from theoretical analysis in equation 2.105.

An interesting case is when external flux fx = π/2, the V−,1 vanishes and the energy
gap can be tuned by ng− . The energy gap is plotted against offset charge ng− in figure
2.15. Note that the energy gap in this case is in the order of 20 kHz, which is significantly
smaller than the energy gap between first and second excited states, which is larger than
6.25 GHz.

Figure 2.15: The absolute value of the energy gap of the lowest two levels against the offset
charge. The external flux is fixed fx = π/2. The blue lines shows the result of simulation,
and the red line shows the result from theoretical analysis in equation 2.105.

The energy gap predicted by the approximation is smaller than the simulation result.
The deviation mainly comes from the inaccuracy of the BO approximation. We assumed
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the state in γ+ space always stays in the ground state, based on the assumption that
the energy to excite the system is large compared to the energy splitting of lowest levels.
However, the energy gap between the ground state and the first excited state of γ+ space is
about 23.36 GHz, which is just a few times larger than the energy gap between the ground
state to the second excited state, which is 6.25 GHz. Thus the tunneling process involves
excited states in γ+ space, whose contribution is not considered in the BO approximation
but not negligible.

At last, we plot the wavefunctions of the lowest two states in the figure 2.16. The
wavefunctions have two patterns: when the external flux fx = 0, the wavefunction is
located near either γ− = 0 or γ− = π; when the external flux fx = π/2, the wavefunction
is located near γ− = 0 and γ− = π.

(a) (c) 

(b) (d) 

Figure 2.16: The wavefunction of the lowest two states. (a),(b): fx = 0 and ng− = 0.
(c)(d): fx = π/2 and ng− = 0.

2.6 Flux and charge noise

In this section we analyse the decoherence processes in the zero-pi qubit. In the following
subsections, we calculate the dephasing time and relaxation time of the zero-pi qubit due
to flux noise and charge noise, at and away from the flux sweet spot.
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2.6.1 Decoherence at the flux sweet spot

Dephasing is caused by processes which induce changes to the transition frequency of the
qubit. In Section 2.1 we showed that the offset charge coupled to inductors does not affect
the spectrum, thus the offset charge fluctuation on ng+ and ngho = ng3 + ng4 does not lead
to the pure dephasing. To calculate the dephasing induced by n− and the flux noise, we
start from equation 2.105. We neglect the zero-point energy and replace k with −ng to
obtain (

V−,1 β
β −V−,1

)(
Ak
Bk

)
= Ek

(
Ak
Bk

)
. (2.105 revisited)

We express the energy V−,1 and β in terms of the circuit parameters:

V−,1 = 2EJ cos fxe
− 1

8

√
ECJ /EL (2.118)

and

β ≈ −3.8 cos(kπ)ECe
−8
√

2

√
E2
J

ECECJ

(
E2
J

ECECJ

)3/4

. (2.119)

Here, we approximate EC− =
ECECJ
EC+ECJ

≈ EC . We also approximate V−,2 = E
(2)
0 /2 cos2 γ− ≈

− 4E2
J

ECJ
according to equation 2.53. We tolerate the accuracy loss associated with these

approximations in order to establish a simple relation between circuit parameters and
qubit parameters.

We estimate the decoherence times based on the parameters we applied in the simulation
section, which are EJ/h = 64 GHz, ECJ/h = 1280 GHz, EC/h = 1.83 GHz, and EL/h =
0.427 GHz. These parameters yield V−,1/h = 0.13 GHz× cos fx, and β/h = 3.34 kHz
× cos(2πng). A “sweet point” is fx = 0, where the first order sensitivity of the flux noise
is eliminated. Moreover, the charge noise is also suppressed by a factor of β/V−,1 [52],
which is also optimized when fx = 0. There is also a “sweet point” for the offset charge.
However, because the dependence on the offset charge is so weak that the influence of
the offset charge noise is negligible, and tuning to the “sweet point” is unnecessary. For
convenience we denote the energy V−,1 at fx = 0 by 1

2
∆, and we also use the parameter

β0 = |β/ cos(kπ)|.

We consider the case of the flux sweet spot. We expand the Hamiltonian up to second
order in the flux fluctuations:

H =
∆

2

(
σz +

f 2
x

2
σz +

2β0

∆
cos(πng−)σx

)
. (2.120)
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Because the factor 2β0
∆

= 2.5× 10−5 � 1, the dephasing induced by the offset charge noise
of the n− part is negligible. For the flux noise, the dephasing process is in the situation of
quadratic longitudinal coupling. The flux noise is taken to be 1/f noise, that is its power
spectral density (PSD) is given by

Sf (ω) = F 2
0 /|ω|, (2.121)

where F0 is the magnitude of the noise. We take Sf (ω) to be the double-sided PSD. The
effect of quadratically coupled 1/f noise on the coherence function P (t) is described by
[52]:

|P (t)| =
[
1 +

(
∆

h
F 2

0 t ln
1

ωirt

)]−1/4

, (2.122)

when ∆F 2
0 t/h � 1. The infrared cutoff ωir is set as the inverse of the total experiment

time, and we use 2π × 10−4. The representative value of F0 is 3.5× 10−6 (converted from
the upper bound in [53]). With the numbers above, we find at 1 s, the phase information
is well-protected:

|P (t)| = 0.9991. (2.123)

The dephasing time T ∗2 , corresponding to significant loss of coherence, can be estimated as
[54]

T2 ≈
∣∣∣∣π2F 2

0

∆

4~

∣∣∣∣−1

= 40 s. (2.124)

We now discuss relaxation at the flux sweet spot. The total relaxation time T1 due to
flux and charge is given by

1

T1

=
1

T fx1

+
1

T
ng+
1

+
1

T
ngho
1

+
1

T
ng−
1

, (2.125)

where the first rate on the right hand side correspond to flux induced relaxation and the last
three rates correspond to charge induced relaxation. We argue that none of these sources
has a significant contribution to energy relaxation. We start with the analysis of the last
term. For the charge noise coupling to the n−, the coupling factor is significantly smaller
than the energy gap of the qubit, by a factor of 105. Therefore, the influence of Tng− is
negligible. The degree of freedom nho is decoupled from the core part. Thus its dynamics
does not affect the qubit. The relaxation process through n+ is more complicated. Based
on the result in Section 2.1, the charge noise in the inductor is equivalent to the charge

55



noise on the neighbor island with a position-related factor. Therefore we can estimate the
relaxation in n+ channel by

1

T
ng+
1

=
E2
CJ

2~2
Sng+ (∆/~) |〈g|n+ |e〉|2 . (2.126)

Here Sng+ (∆/~) is the PSD of the effective charge noise at the qubit frequency, and |g〉
and |e〉 are the qubit states. According to the theoretical analysis, |g〉 and |e〉 have the
same wavefunctions in γ+ space, which we denote as |ψ〉. Because the wavefunction is a
real function of γ+. We also know that 〈n〉 must be real, which can be written as,

〈ψ|n+ |ψ〉 = −i 〈ψ| ∂

∂γ+

|ψ〉 . (2.127)

Because |ψ〉 is a real function of γ+, ∂
∂γ+
|ψ〉 must be real. Hence the value of 〈n〉 must be 0,

and the ng+ noise also have no contribution to the relaxation. As a result, we approximate
the relaxation as,

1

T1

=
1

T fx1

. (2.128)

The flux noise also does not induce the relaxation in the first order approximation result.
The system is coupled to the external flux noise though γ+ and γho, see equation 2.36. The
relaxation does not occur through γho as the degree of freedom has been decoupled from
the qubit levels. The relaxation time through γ+ is given by

1

T fx1

=
E2
L

~2
Sf (∆/~) |〈g| γ+ |e〉|2 . (2.129)

According to the BO approximation result in equation 2.38, we can calculate 〈g| γ+ |e〉 as

〈g| γ+ |e〉 =

∫
dγ−ψ

∗
00(γ−)ψ10(γ−)

∫
dγ+f

∗
0 (γ+; γ−)γ+f0(γ+; γ−). (2.130)

The second integration can be evaluated up to the first order approximation from equation
2.48 and 2.130:∫

dγ+f
∗
0 (γ+; γ−)γ+f0(γ+; γ−) ≈ fx +

(
ECJ
EL

)1/4 (
〈0(0)| a |0(1)〉

)
, (2.131)

where |0(0)〉 and |0(1)〉 are the zeroth and first order correction to the ground state in γ+

space. At the “sweet point”, both fx and
(
〈0(0)| a |0(1)〉

)
are zero and no relaxation is

induced in the flux channel.

56



We have estimated the dephasing and the relaxation of the zero-pi qubit at the “sweet
point” where fx = 0. Neither the flux noise nor the charge noise contributes to the
relaxation process, while the dephasing time is 40 s. The result shows that the zero-pi
qubit is well-protected against the flux noise and the charge noise.

2.6.2 Estimate for the dephasing process and relaxation process
away from the flux sweet spot

In this subsection we estimate the dephasing and the relaxation times when the qubit is
biased away from the “sweet point”. We take for definitiveness fx = π/4. When away
from the “sweet point”, the flux qubit has linear coupling component to the spectrum and
also introduce relaxation. The estimate of dephasing time at fx = π/4 is,

T2 ≈
√

2π

F0

(√
2∆

4~

)−1

= 1.2 ms. (2.132)

The charge noises estimation does not change while we reevaluate of the flux noise contri-
bution. We revisit 2.131,∫

dγ+f
∗
0 (γ+; γ−)γ+f0(γ+; γ−) ≈ fx +

(
ECJ
EL

)1/4 (
〈0(0)| a |0(1)〉

)
. (2.131 revisited)

At fx = π/4 we have(
ECJ
EL

)1/4 (
〈0(0)| a |0(1)〉

)
=

√
2EJ

2EL
exp

(
−1

4

√
ECJ
EL

)
cos(γ−). (2.133)

Then we can evaluate 2.43,

〈g| γ+ |e〉 =

√
2EJ

2EL
exp

(
−1

4

√
ECJ
EL

)∫
dγ−ψ

∗
00(γ−) cos(γ−)ψ10(γ−). (2.134)

The integration can be calculated by the WKB approximation but an approximation can
be given with ease. We neglect the overlap of the wavefunctions in different wells and
approximate cos(γ−) by a step function,

s(γ−) =

{
1, cos(γ−) ≥ 0,

−1, cos(γ−) < 0.
(2.135)
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The integration becomes A∗k,1Ak,2 − B∗k,1Bk,2 = 2 sin 2θ ≈ β/V−,1, see equation 2.112 and
2.113. With the circuit parameters we give the estimation of relaxation,

1

T fx1

≈ 8× 10−18 Hz, (2.136)

indicating the relaxation contribution from the flux noise is negligible.

2.7 Conclusions

The zero-pi qubit is a qubit design that focuses on the protection against various noise
sources. This qubit has a symmetric structure with identical pairs of Josephson junctions,
capacitors, and inductors. Among the three degrees of freedom, one describes the harmonic
oscillation of the LC component and can be decoupled from the other degrees of freedom,
which are critical in forming the qubit levels. Of these two degrees of freedom, one has a
large kinetic energy coefficient compared to the other one, allowing the use of the BO ap-
proximation to simplify the system into a one-dimensional problem. The one-dimensional
problem is analog to a particle in a π-periodic potential with a 2π-periodic perturbation.
The qubit states are the lowest two states of this one-dimensional problem.

We calculated the dephasing time and relaxation time in the flux and charge channels.
The qubit shows excellent isolation against charge noise sources. No charge noise channel
can be a significant source for dephasing or relaxation processes. At the same time, the
dephasing time due to the flux channel is about 40 s at the “sweet point” and over 1 ms
when biased at fx = π/4. Relaxation due to flux noise at the sweet spot is negligible,
whereas T fx1 = 1018 s at the bias point fx = π/4. We conclude that the qubit shows high
resistance against flux and charge noises, and has large anharmonicity, which are important
characteristics of a good qubit.

We also showed a practical method to describe the qubit and its dynamics. By using
a series of approximations we obtain the qubit Hamiltonian parameters and we show that
approximations are well justified.

Only a few studies of the zero-pi qubit have been done up to this date. Our work
demonstrates resistance against flux and charge noise, whereas previous work addressed
the role of circuit parameter disorder [35] and the potential to carry protected qubit gates
[36]. However, how to measure the qubit state while keeping its protection unbroken is an
open question. In addition, the proposed protected gates [36] could not form a universal
operation set, thus either we have to tolerate some unprotected gates or we need to find
more protected gates.
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Chapter 3

Floquet state dynamics

In this chapter, we study the qubit dynamics under strong driving. Sending monochromatic
microwave pulses to the superconducting circuit is a standard method to perform qubit
gates [18]. With weak signals, the qubit evolution is simple as its behavior can be described
using rotating wave approximation (RWA) [55]. But weak signal has its drawback on gate
speed. To achieve as many qubit gates as possible in a certain time, a fast and accurate
qubit gate is desirable. One approach to realizing the fast gate is using strong driving
signals, but strong driving breaks the rotating wave approximation (see Section 3.5). As
a result, a qubit behaves more irregularly than that in the weak driving condition. Our
study focuses on building a more general model that can express the qubit behavior in
strong driving condition.

The Hamiltonian we use to describe a driven qubit is relatively simple. It contains a
Hamiltonian of the qubit and an extra term expressing the microwave drive. Despite the
simplicity of the Hamiltonian, the solution to the Schrödinger equation is time-dependent
and very complicated. Moreover, directly solving the differential equation is a hard task.
Instead, we apply the Floquet theory [56] which is a mathematical method for periodic
differential equations. In the frame of Floquet theory, we can obtain the solution of the
system by calculating the eigenvalues and eigenstates of the Floquet operator, and avoid
solving the differential equation directly.

In Section 3.1 we review the Floquet theory and its application to a driven qubit. We
realize the strong driving condition experimentally, and we introduce the experimental
settings in Section 3.2. We also simulate the system to assist the analysis. The simulation
results are presented in Section 3.3. In Section 3.4, we finalize the model that can explain
what we observe in the experiment. The relation between our model and the model based

59



on RWA method is discussed in Section 3.5.

Note that for simplicity in this chapter we use the dimensionless unit where ~ = 1.

3.1 Floquet theory

In this section we introduce the basics of the Floquet theory that we will use in the fol-
lowing sections. The Floquet theory was originally developed to solve periodic differential
equations [56]. In quantum mechanics, this framework suitable to solve a system with a
periodic time-dependent Hamiltonian. We consider the Schrödinger equation,

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (3.1)

where the Hamiltonian is periodic in time and satisfies H(t+T ) = H(t). According to the
Floquet theory, the solutions are in the form:

|Ψα(t)〉 = e−iεαt |uα(t)〉 . (3.2)

The state |Ψα(t)〉 is called Floquet state and the state |uα(t+ T )〉 = |uα(t)〉 is a periodic
Floquet mode. The quasienergy εα is a constant, and can be determined along with the
Floquet modes by

H |u(t)〉 = ε |u(t)〉 , (3.3)

where H = H(t)− i d
dt

.

If we start with a Floquet state |Ψα(t)〉 = e−iεαt |uα(t)〉, we can obtain another set of
quasienergy and Floquet mode by shifting the phase,

|Ψ′α(t)〉 = e−i(εα+2π/T )t |u′α(t)〉 , (3.4)

where |u′α(t)〉 = e2iπt/T |uα(t)〉. Apparently |Ψ′α(t)〉 and |Ψα(t)〉 are the same state, and the
new quasienergy εα+2π/T is an alias of εα. In fact, each quasienergy is accompanied by an
infinite set of alias. To properly label these states and energies, we use double subscripts
for each quasienergy, i.e. εα,n. The subscript α is a positive integer and labels the physical
states, while n is an integer labels the alias. For each fixed α, the quasienergy differs by
2π/T when the label n differs by 1. For example,

εα,n = εα,n−1 + 2π/T. (3.5)

We select εα,0 in the First Brillouin zone −2π/T < εα,0 < 2π/T . When n = 0 we omit the
subscript n for simplicity.
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3.2 Experimental setup

We run an experiment to observe the qubit behavior in strong driving condition. We use
a superconducting flux qubit as the driven system. The lowest two states of the flux qubit
are close to each other, while the third state has a large energy gap to the lowest states.
Thus flux qubit can be regarded as a two-state qubit system. Also, the flux qubit has a
loop structure and can be tuned by the magnetic flux penetrating the loop, see Section
1.3.2 and [23] for more information on the flux qubit. The coupling between the qubit and
the electromagnetic fields is strong, which allows us to reach the strong driving regime.

We couple the qubit with a transmission line resonator for measurement in a circuit
quantum electrodynamics architecture [18]. The qubit-resonator system enters the disper-
sive regime when the cavity frequency significantly differs from the qubit frequency. In the
dispersive regime, the cavity frequency is shifted by the qubit and the shift depends on the
qubit state. Therefore we measure the cavity frequency to probe the state of the qubit.

The whole sample is enclosed in a copper box and cooled down to 35 mK in a dilution
refrigerator. To minimize the environmental magnetic field noise, the box is surrounded by
a three-layer high-permeability metal shield. The lower part of the fridge, where the sample
is placed, is protected in addition by an active magnetic field compensation system. The
signal for qubit control is generated directly by an arbitrary waveform generator (AWG),
Tektronix AWG700002A. Using an AWG provides the full access to the signal encoding,
which is very difficult in the usual method based on mixers. Moreover, this method avoids
the band limit and noise induced by the mixers. The signal is sent through coaxial cables
to the superconducting device, with attenuators and filters at each temperature stage. The
signal output from the cavity is amplified by a low-noise high electron mobility transistor
amplifier with a noise temperature of 4 K.

The sample is fabricated on a high-resistivity silicon substrate. The cavity and the
control line are constructed by evaporation of a 190 nm thick aluminum layer, and the
qubit is constructed by double shadow evaporation of a 40 nm and a 60 nm aluminum
layers. The fundamental frequency of the cavity is ωc = 2π× 6.641 GHz, and the coupling
strength is g = 2π×537 MHz. The qubit frequency is ωq = 2π×2.288 GHz, and persistent
current is Ip = 690 nA. Here the qubit frequency is the dressed qubit frequency, which is
shifted from the bare qubit frequency by the qubit-cavity interaction. Scanning electron
microscope (SEM) images are shown in figure 3.1.
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(a) (b) 

Figure 3.1: (a) SEM image of the qubit (red square) and the resonator. The qubit is
controlled by the microwaves coupled to the antenna on the right. (b) SEM image of the
qubit. The qubit consists of one large junction and three smaller junctions.

We bias the qubit at its symmetry point, i.e. magnetic flux in the loop is half of a
magnetic quantum Φx = Φ0/2. At the symmetry point, the relaxation time and dephasing
time are T1 = 1.8 µs and T ∗2 = 0.3 µs respectively. The qubit is prepared in the ground
state by free relaxation before the driving pulse arrives. The AWG synthesizes the pulse
in the form of A cos(ωdt), where A is the amplitude of the signal, in unit of energy, and
ωd is the driving frequency. At last, we send the probing signal to the cavity to learn the
qubit state. Each cycle of relaxation, driving, and probing is repeated for 16, 384 times to
average out the noise and determine the excited population of the qubit.

3.3 Simulation

The simulation of the qubit dynamics helps us track the qubit dynamics more closely. The
first step to set up the simulation is to build the proper model. The qubit, along with the
cavity, can be described by the Hamiltonian,

H = −1

2
ωbare,qσz + ωca

†a− g

2
σx(a

† + a), (3.6)

where the Pauli matrices σz and σx are the operators defined in the qubit space, and the
ladder operators a and a† affect the on the cavity states. The frequencies ωbare,q, ωc stands
for the bare qubit frequency and the cavity frequency respectively, and g is the coupling
factor. Because in this sample the coupling factor g is much smaller than the frequency
difference ∆ = |ωbare,q − ωc|, the system is in the dispersive regime and we obtained an
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effective Hamiltonian by an approximated diagonalization of the Hamiltonian in equation
3.6[18],

H =
1

2
(ωbare,q +

g2

∆
)σz + (ωc +

g2

∆
σz)a

†a. (3.7)

The second part of the Hamiltonian indicates that the cavity frequency is affected by the
qubit state, which is the theory fundament of qubit state measurements. The first part
describes a dressed qubit, which is a two level-system contains ingredients of qubit and
cavity. The frequency of the dressed qubit is denoted by ωq. In the experiment, we are
actually manipulating and measuring the system mixed by the qubit and the cavity, but not
the qubit along. The parameters are obtained based on fitting the experiment result. For
convenience, we omit the word “dressed” and simple refer it as the qubit. The frequency
of the qubit is ωq = 2π × 2.288 GHz.

The validity of separating the cavity and qubit is verified by the simulation. We simulate
a simplified model with a qubit alone, and a full system consists of a coupled qubit and a
cavity. We simulate the system dynamics of both models under driving signals. The result
is shown in figure 3.2. The difference between the simplified model and the full model is
very small. We also monitor the photon number expectation value in the cavity, which is
less than 0.05 and has a minimal influence on the dynamics. Since no significant difference
is addressed between two models, we can safely adopt the simpler model, where the system
consists of one qubit.
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Figure 3.2: Simulation of qubit state tomography in full model and simplified model. The
driving amplitude is 0.2288 GHz, which is 1/10 of the qubit frequency. The black line (full
model) and the red line (simplified model) almost overlap perfectly.

Now we have arrived the Hamiltonian to simulate the qubit, and we are adding the
driving signal. The signal is monochromatic and starts at time t = 0, and in the form of
cos(ωdt). The time-dependent Hamiltonian for this system is,

H = −ωq
2
σz + A cos(ωdt)σx. (3.8)

Here, A is the driving amplitude in unit of energy, and ωd is the driving frequency. We
simulate the real-time dynamics of the qubit in driving in weak and strong driving regimes,
and compare them with the experiment data. The result is shown in the figure 3.3. The
experiment result and the simulation result match very well.
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Figure 3.3: Qubit dynamics tomography obtained by experiment measurement and simu-
lation. The amplitudes of the driving force are (a) A = 2π×0.1 GHz and (b) A = 2π×0.46
GHz.

We also apply the discrete Fourier transformation to the time-domain dynamics of the
qubit states with different driving strength (figure 3.4). We do not comment on the physics
behind these patterns now but leave it to the next section, and we emphasize that the
simulation and the experiment results are very similar. As the consequence, the numerical
model successfully reflects the real system behavior, and we can use the simulation to have
a better understanding of the qubit system.
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Figure 3.4: Fourier components extracted from the qubit dynamics in (a) experiment and
(b) simulation. The lightness of an area reflects the magnitude of the corresponding Fourier
component.

3.4 Theory

In this section we reveal the physics behind the link between the Fourier pattern in figure
3.4 and the model based on the Floquet theory. The Hamiltonian generating the pattern
in given in 3.8, which we revisit here,

H = −ωq
2
σz + A cos(ωdt)σx. (3.8 revisited)

We use the qubit basis, where |0〉 and |1〉 represents the ground state and excited state
respectively. And we thus define the differential equation,

H |u〉 = ε |u〉 , (3.9)

where ε is the quasienergy and we define H as Floquet Hamiltonian,

H =

(
−ωq

2
σz + A cos(ωdt)σx − i

d

dt

)
. (3.10)
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According to the Floquet theory, states evolve according to the Hamiltonian in equation
3.8 is a superposition of Floquet states. The number of Floquet states is determined by the
dimensions of the Hamiltonian, which is two in our case. We denote |Ψ1(t)〉 and |Ψ2(t)〉
as the two Floquet states, corresponding to quasienergies ε1 and ε2 respectively, and they
fulfill the expression,

|Ψi(t)〉 = e−iεit |ui(t)〉 , (3.11)

where i = 1, 2 and the Floquet mode |ui(t)〉 is 2π/ωd- periodic in t and are the eigenstates
to the equation 3.9. We express the Floquet mode in the qubit basis, with time-dependent
and periodic coefficients,

|ui(t)〉 = ci,0(t) |0〉+ ci,1(t) |1〉 . (3.12)

Because ci,j(t) has a periodicity of 2π/ωd, they can be expanded as

ci,j =
∑
n

di,j,ne
inωdt. (3.13)

Then we combine equations 3.12 and 3.13 and insert them in 3.9, which leads to a recurrence
relation, {

−ωq
2
di,0,n + A

2
(di,1,n+1 + di,1,n−1)− nωddi,0,n = εidi,0,n,

ωq
2
di,1,n + A

2
(di,0,n+1 + di,0,n−1)− nωddi,1,n = εidi,1,n.

(3.14)

Before we write the recurrent relation in matrix form, categorizing these coefficients is very
helpful to next steps. The coefficients can be placed into two groups and only elements
in each group are related by the recurrent relation, while no linked between elements in
different groups. An easy way to determine the belonging of an element is to look at the
sum of the last two indexes: if it is odd, the element belongs one group which we name
“odd”; otherwise it goes to the other group called “even”. For example, di,0,2 are in the
“even” group while di,2,3 are in the “odd” group. For a fixed index i, two groups are isolated
from the recurrence relation to each other and each group can be solved individually. As a
result, we have two set of recurrent relations at hand and we express them in two matrices.
The matrix for group “even” is,

Meven =



. . .

−ωq
2
− (n− 1)ωd

A
2

A
2

ωq
2
− nωd A

2
A
2

−ωq
2
− (n+ 1)ωd

A
2

A
2

ωq
2
− (n+ 2)ωd

. . .


.

(3.15)
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The basis for the shown part is di,1,n−1, di,0,n, di,1,n+1, di,0,n+2. The matrix for group “odd”
is very similar but the sign of ωq changes,

Modd =



. . .
ωq
2
− (n− 1)ωd

A
2

A
2

−ωq
2
− nωd A

2
A
2

ωq
2
− (n+ 1)ωd

A
2

A
2

−ωq
2
− (n+ 2)ωd

. . .


.

(3.16)
The basis for the shown part is di,1,n−1, di,0,n, di,1,n+1, di,0,n+2. The eigenvalues of the two
matrices are closely related. To see this, we firstly define two matrices,

Ω1 =



...

1
1

1
1

...


. (3.17)

and

Ω2 =



. . .

1
−1

1
−1

. . .


. (3.18)

Apparently these two matrices Ω1 and Ω2 are all orthogonal, i.e. ΩΩ† = Ω†Ω = 1. Matrices
representing the relation of group “odd” and group “even” can be related through the
transformation,

Meven = −Ω2Ω1ModdΩ†1Ω†2. (3.19)

Therefore, if λ is an eigenvalue of matrix Meven, we must have

0 = det(Meven − λ1) = − det
(

Ω2Ω1(Modd + λ1)Ω†1Ω†2

)
. (3.20)

And thus −λ is an eigenvalue of Modd. Another way to link Meven and Modd is by adding
ωd1,

Modd + ωd1 = Meven. (3.21)
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Repeating once more we recover the original matrix,

Modd + 2ωd1 = Modd. (3.22)

From these equations, we can tell Meven has eigenvalues λ+2kωd and −λ+(2k+1)ωd with
integer k, while Modd has eigenvalues −λ+2kωd and λ+(2k+1)ωd. For each matrix, there
must be one and only one eigenvalue falls in the first Brillouin zone (−ωd/2, ωd/2), and
they are additive inverse because of equation 3.20. We recognize these two eigenvalues as
quasienergies ε and −ε, corresponding to the eigenvalue found in Meven and Modd respec-
tively. We know that the number of quasienergies equals the dimension of the Hamiltonian,
which is two. Therefore we have found all the quasienergies. Note there is one exception
that the matrix has eigenvalue 0, two eigenstate can be mixed up and not confined in Meven

or Modd. But this case does not affect our conclusion, and we will discuss it later.

We denote εeven and εodd to the quasienergy found in Meven and Modd respectively. The
eigenvector associated with εeven contains only elements in group “even”, while the other
eigenvector has only elements in group “odd”. Therefore we can write one Floquet mode
derived in “even” group as,

|ueven〉 = feven,0(t) |0〉+ eiωdtfeven,1 |1〉 (3.23)

where feven,0(t) =
∑∞

k=−∞ deven,0,2ke
2ikωdt and feven,1(t) =

∑∞
k=−∞ deven,1,2k+1e

2ikωdt. Note
we extracted a factor eiωdt in feven,1(t) and put it explicitly in the equation. It clearly
shows that both feven,0(t) and feven,1(t) are periodic functions with angular frequency 2ωd.
We draw the similar conclusion on the Floquet mode derived in group “odd”,

|uodd〉 = eiωdtfodd,0(t) |0〉+ fodd,1 |1〉 , (3.24)

where fodd,0(t) =
∑∞

k=−∞ dodd,0,2k+1e
2ikωdt, fodd,1(t) =

∑∞
k=−∞ dodd,0,2ke

2ikωdt. For any state
that evolves under the driving signal can be expressed by a superposition of Floquet modes,

|ψ(t)〉 = α |Ψ1(t)〉+ β |Ψ2(t)〉 = αeiεt |ueven〉+ βe−iεt |uodd〉 . (3.25)

Furthermore, we can express it in qubit basis,

|ψ(t)〉 =
(
αeiεtfeven,0 + βe−iεteiωdtfodd,0

)
|0〉+

(
αeiεteiωdtfeven,1 + βe−iεtfodd,1

)
|1〉 . (3.26)

The probability we obtaining |1〉 in the measurement is,

| 〈ψ(t)|1〉 |2 = |αfeven,1|2 + |βfodd,1|2 + 2<
(
α∗βei(ωd−2ε)tf ∗even,1fodd,1

)
. (3.27)
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The first two terms are both periodic functions with angular frequency 2ωd. These two
terms together contribute to the straight light lines at 2nωd with integer n in figure 3.4.
The last term lights up the lines at 2nωd ± (ωd − 2ε) with integer n. We compare the
result predicted by this theoretical model and the simulation result in figure 3.5. The
model explains all the bright lines appearing in the Fourier space contour plot, thus help
us understand the qubit behavior in the strong driving condition.
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Figure 3.5: Fourier component peaks and theoretical predictions. The black dots shows
the peaks which can be observed in the experiment. The solid lines shows 2nωd in green,
(2n− 1)ωd + 2ε in red and (2n+ 1)ωd − 2ε in blue.

3.5 Relation to rotating wave approximation

In this section we calculate the rotating wave approximation in the resonance case, and
show how the RWA is connected to the model we built. We revisit the Hamiltonian of the
driven system,

H = −ωq
2
σz + A cos(ωdt)σx. (3.8 revisited)
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In the resonance case, the driving frequency ωd = ωq. We choose the frame that rotates at
the qubit frequency. The Hamiltonian in the rotating frame becomes,

Hrot =
A

2
(1 + cos(2ωqt))σx −

A

2
sin(2ωqt)σy. (3.28)

In the rotating wave approximation, we omit the high frequency terms, assuming their
effect averages out in the qubit evolution. Therefore the approximated Hamiltonian is,

HRWA =
A

2
σx. (3.29)

As the result, the measurement gives |1〉 with probability

p =
1

2
(1− cos(At)) , (3.30)

given the initial state |0〉. Now we go back to the model based on Floquet state. The
quasienergies can be obtained from matrix in 3.15. With small A, the quasienergy can be
approximated as,

ε =
1

2
(ωq − A). (3.31)

Moreover, eigenstates shows fodd,i ≈ 1/
√

2, for i = 0, 1 and feven,0 = 1/
√

2, feven,1 = 1/
√

2.
We take these numbers into equation 3.27 and we get,

| 〈ψ(t)|1〉 |2 = |α|2 + |β|2 + <(α∗βeiAt). (3.32)

If we set initial state as |ψ(0)〉 = |0〉, we have −α = β = 1/
√

2. Thus we recover the
probability function,

| 〈ψ(t)|1〉 |2 =
1

2
(1− cos(At)) . (3.33)

We clearly see that when A is small, the RWA is the first order approximation of the
solution in the model based on Floquet theory. When A gets larger, the approximation to
the quasienergy and eigenstates do not hold, and the RWA also breaks down.

3.6 Conclusion

We designed and executed an experiment where the driving frequency is significantly ex-
ceeding the qubit frequency. When the driving signal is strong, we observed deformation in
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the Rabi oscillation curve, which is unexpected in the weak driving regime. The simulation
confirmed the deformation is not coming from noise. Moreover, the deformation shows a
specific pattern if we plot it in the Fourier space, showing the curve contains frequencies
2nωd and (2n + 1)ωd ± 2ε. We built a model based on Floquet theory, which successfully
explains the pattern. We also showed in the resonance case, the approximation in the weak
driving condition appears as the first order effect of our model.

Our model explains the possible frequencies in qubit Rabi oscillation, and also provides
an alternative way to calculate the qubit evolution. This method is precise and valid in
the regime where the RWA breaks down.
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Chapter 4

Concluding Summary

The work presented in this thesis focuses on two topics: a qubit design that emphasizes
the protection against different sources of noise, and qubit dynamics in the strong driving
regime. These two topics are both aiming at the same goal: improve the efficiency of
processing quantum information.

The design of the zero-pi qubit has shown its robustness against both charge noise and
flux noise. Also, we have shown that the qubit has a large anharmonicity. These characters
make the zero-pi qubit a promising candidate for scalable quantum computing. We de-
rived an effective Hamiltonian of the qubit, which is a powerful model for further studies,
especially for creating efficient and protected qubit gates and measurement protocols.

We have also presented the theoretical analysis of qubit evolution under strong driving
conditions. The model successfully explains the qubit behavior in a concise form, and
overcomes the failure of rotating-wave approximation, making it a natural way to describe
the system under strong driving fields. The model can be applied to diagnose the accuracy
in controlling the fast qubit evolution.
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Appendix A

Born–Oppenheimer approximation

The Born-Oppenheimer (BO) approximation is a technique originally designed for electron-
nuclear problem. The electron is much higher in speed than the nuclear. Thus the nuclear is
considered fixed to electrons, and is interfered through an average but not the exact portion
of the electron. The fundament that holds the approximation is that the distribution of
the electron wavefunction is insensitive to the nuclear possible position. Generally, the BO
approximation fits for any problem that involves a rapid part acts like an electron and an
inertial part acts like a nuclear.

A.1 Basis

We take a electron-nuclear system as the example. For simplicity we consider a one-
dimensional model. The Hamiltonian has the form,

H = − ~2

2m

∂2

∂x2
− ~2

2M

∂2

∂2
+ V (x,X), (A.1)

where ∂2

∂x2
and ∂2

∂X2 are the partial derivatives on the position of the nuclear and the electron
respectively. The nuclear mass M is much larger than the electron mass m. The electron
and the nuclear interacts through the potential V (x,X). Then we select the basis {|ψnk〉},
which is defined as

|ψnk(x,X)〉 = |Fnk(X)〉 |fk(x;X)〉 . (A.2)

Here, we decompose the state |ψnk(x,X)〉 into two parts: |Fnk(x)〉 and |fk(x;X)〉. The state
|fk(x;X)〉 is the wavefunction of the electron with the position of nuclear as a parameter.
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It is the kth eigenstate of the Hamiltonian,

Helectron = − ~2

2m

∂2

∂x2
+ V (x,X). (A.3)

We denote the eigenenergy as E‖(X), which is a function on X. The other component
of |ψ〉 is |Fnk(x)〉, which is the wavefunction of the nuclear. It is the eigenstate of the
Hamiltonian,

Hnuclear = − ~2

2M

∂2

∂X2
+ E(X)k, (A.4)

with eigenenergy Enk. The potential here, Ek(X), is the eigenenergy of |fk(x;X)〉. We
conclude that every state in the basis {|ψnk〉} is associated with an energy Enk. The state
with lowest energy is the approximation to the ground state of the electron-nuclear system.

Now we show that the basis is an orthonormal complete basis. The orthonormality is
straightforward:

〈ψml(x,X)|ψnk(x,X)〉

=

∫∫
F ∗ml(X)Fnk(X)fl(x;X)fk(x;X)dxdX

=

∫
F ∗ml(X)Fnk(X)δl,kdX

=δmnδlk. (A.5)

To prove the completeness, we choose an arbitrary state |ϕ(x,X〉, and show that the state
can be expanded in terms of |ψ(x,X)〉nk. Firstly, with any fixed X = X ′, {fk(x,X ′)} is
a complete basis because it is the eigenstates of the Hamiltonian. Thus can we expand
|ϕ(x,X)〉 in terms of fk(x,X

′)

ϕ(x,X) =
∑
k

αk(X)fk(x;X) (A.6)

where α is the expansion coefficient which depends on X and k. For any fixed subscript
k, the set |Fnk(X)〉 is a complete basis on space X. Therefore we expand αk as

αk(X) =
∑
n

βnkFnk(X). (A.7)

And we obtain the expansion of an arbitrary state |ϕ〉 (x,X) =
∑

nk βnkFnk(X)fk(x;X).
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A.2 Perturbation term

The states |ψnk(x,X)〉 in the basis can be regard as the zero-th order approximation of
the solution to the Hamiltonian. In this section we show the perturbation term. In the
previous section we have proved that the basis is orthonormal and complete. Thus we can
show the perturbation term in the basis by calculating ∆H = 〈ψml|H |ψnk〉 − δmnδklEnk.
We have

〈ψml|H |ψnk〉 = 〈ψml|
(
− ~2

2M

∂2

∂X2
+Helectron

)
|ψnk〉 × δkl

− ~2

2M

(
2 〈Fm|

∂

∂X
|Fn〉 〈fl|

∂

∂X
|fk〉+ 〈Fm|

(
〈fl|

∂2

∂X2
|fk〉
)
|Fn〉

)
. (A.8)

The first term equals δmnδklEnk. Thus the perturbation term is,

∆H = − ~2

2M

(
2 〈Fm|

∂

∂X
|Fn〉 〈fl|

∂

∂X
|fk〉+ 〈Fm|

(
〈fl|

∂2

∂X2
|fk〉
)
|Fn〉

)
. (A.9)
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