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The Integration Of RS And GIS To Facilitate Sustainable Urban Environmental 
Management:  The Case of Bangkok, Thailand 

 

ABSTRACT 

Cities in developing countries are facing serious problems as a result of rapid urban 

population growth.  Not the least of these problems is the creation of environmental stresses 

at the rural-urban fringe of these cities as they increase in area and envelop fertile 

surrounding agricultural lands.  Because of this rapid rate of growth, sustainable urban 

environmental management (SUEM) policies and practices are often difficult to develop and 

implement proactively.  This thesis argues that rapid population growth and subsequent 

urban expansion occurs such that urban form and function are built around the 

transportation network.  In this context, a basic requirement for the facilitation of SUEM is 

the ability to be able to detect and extract indicators of urban expansion, in particular the 

road network, from available satellite remote sensing (RS) data.  Subsequently, the indictors 

of growth derived from RS imagery can be integrated into a multi-source GIS database with 

ground-based census data to facilitate potential environmental stress analysis.  The extraction 

of useful data from RS imagery for GIS-based analysis of urban growth is achieved through 

an integrated conceptual and operational framework presented in the thesis.  This 

framework allows for environmental stress analysis at the urban periphery that can assist 

with the design of policies to contain urban growth. 
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CHAPTER 1 

 

INTRODUCTION 

 

The need for access to accurate, up-to-date land use information is especially 

important for urban land use management in developing nations.  Extensive and rapid 

growth of urban areas in these countries has created numerous urban environmental 

problems such as pollution, degradation of potable water, loss of valuable peri-urban and 

surrounding agricultural land, and traffic congestion, among others.  To help develop 

policies targeted at ameliorating these problems and facilitating environmentally sound 

development, planners are increasingly turning to the use of spatial information technologies 

such as remote sensing (RS) and Geographic Information Systems (GIS).  These tools are 

now starting to become widely used in both developed and developing countries.  However, 

in both contexts there is a dislocation between policy development and planning, relative to 

the potential contribution offered by spatial information technologies.  This is especially true 

in the realm of sustainable urban environmental management (SUEM).  SUEM can be best 

defined by breaking it down into its separate parts, namely sustainable development and 

urban management in conjunction with social and economic development.  Combined, these 

parts provide a basis for sustainable development through management of urban 

environments.  This thesis explores some of the needs of SUEM through the use of spatial 

information technologies.  The tools of RS and GIS are combined in a temporal analysis to 

demonstrate their use for the identification of potential environmental stress indicators in 

targeting problem areas on the rural-urban fringe of Bangkok, Thailand. 

1.1 Problem Statement 

The rapid and often disorganised sprawl of large cities, especially those in developing 

countries, causes many difficulties for their inhabitants and makes the task of providing 

urban infrastructure and services a major challenge for planners.  Traditionally, the means 

for determining the location and nature of new urban development has been through 
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extensive in-situ fieldwork.  Following this, new developments are planned and urban areas 

spread outwards incrementally from their initial development.  However, ground-based 

fieldwork is both time consuming and of questionable benefit in developing countries, as the 

rate of change is often rapid and adherence to formal urban planning principles in 

infrastructure and service provision is, at best, ad hoc.  Reliable and timely data about the 

location, form and morphology of urban land use change is often lacking and, given this, it is 

difficult to facilitate proper policy development and decision-making in regard to urban 

service planning and sustainable management. 

The types of data required to achieve SUEM objectives in large cities in developing 

countries are wide ranging and include physiographic, demographic and land-use data, 

among others.  SUEM typifies the need for growth management that provides for a 

sustainable environment, while continuing to enable focussed and prosperous urban growth 

to occur.  In this thesis, the need for SUEM is addressed in terms of how best to create the 

information technology context required for SUEM to occur as a city grows.  To facilitate 

properly managed development, many types of up-to-date information are required.  One 

widely used method of obtaining timely information about the morphology of rapidly 

changing urban areas is through the use of space-borne satellite imagery.  High-resolution 

satellite imagery has the ability to provide relatively inexpensive land-cover data for mapping, 

inventory, and change detection at short time intervals.  Satellite images provide a good 

overall ‘picture’ of an urban area and provide a great deal of spectral information regarding 

land-use over extended areas.  However, satellite imagery does have limitations and it is not, 

in and of itself, sufficient to derive useful information concerning the morphology and land-

use structure of large cities. Accordingly, one of the main purposes of this thesis is to 

demonstrate the ability to transform this imagery into usable data within a multipurpose GIS 

environment.  Once transformed into this format and combined with other ground-based 

information, the combined data are used to identify ‘triggers’ that characterize the location of 

zones of potential environmental stress that require management strategies to cope with 

subsequent urban growth.  Temporal analysis of the urban periphery in search of such zones 

is integral to this study. 
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1.2 Objectives of the Thesis 

As developing countries attempt to bridge the gap between their current social and 

economic status and the western world’s levels of development, often defined through 

improvements in living standards and more equitable incomes and alleviation of poverty, the 

natural environment often bears the brunt of any attained growth.  Economic growth 

through rapid industrialization always brings about expansion of urban centres that consume 

often-fertile surrounding agricultural land.  The analysis of land-use morphology through the 

integration of RS data with ground-based data stored in a GIS offers improved insights into 

both land structure and the process of land-use change.   

This thesis focuses on this integration to facilitate the study of land use change 

signals, especially at the urban periphery.   The general objective is to develop an operational 

methodology for use by planners and others employing the tools of RS and GIS to identify 

areas of potential environmental stress associated with impending rapid urban growth at the 

rural-urban periphery.  The specific objectives of the thesis are: 

(i) to develop an integrated conceptual framework based on the concepts of 
sustainable development and urban environmental management for the 
achievement of SUEM in cities in developing countries,  

(ii) to operationalise this conceptual framework through the integration of RS and 
GIS spatial information technologies,  

(iii) to extract roads and classify adjacent land uses from temporal RS imagery and, 
subsequently, to put these features into a GIS for further temporal analysis with 
ground-based data to analyse land use at the rural-urban fringe, and 

(iv) to detect land use change and subsequent indicators of potential environmental 
stresses.  

The case study for the research is Bangkok, Thailand.  Potential environmental 

stresses such as the appearance of informal settlements, road densification, increased 

vehicular congestion as a result of more roadways, and increased housing density that may 

lead to increased air and water pollution, are all characteristic of many cities in developing 

countries, including Bangkok (Bishop et al, 2000).  In this context, indicators of stress, which 

are identifiable using both RS and GIS technologies, are used to signify the process of 

urbanization and potential locations for the incidence of environmental stresses.   
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Specifically in this research roadway construction is regarded as the initial trigger for 

generalised land use change around which urban growth follows.  The main notion here is 

that any urban sprawl must initially begin with some form of path or roadway to allow for 

greater access and mobility.  Consequently, where roads develop, people soon follow as areas 

that were formally inaccessible to vehicular traffic are opened up.   Increased population 

then leads to the need for improved infrastructure provision and other urban goods and 

services.  In this sense, roads are identified as the initial indicator of urban growth that 

‘trigger’ further development.   Additional triggers include densification of buildings, 

decreases in land under agricultural production and increased population and numbers of 

households.   

To achieve the overall objectives of the thesis, a procedure is developed for 

extracting trigger-related features from imagery and converting these features to data 

structures that can be used with a GIS for urban environmental management.  Emphasis is 

placed initially on transportation networks, followed by the incorporation of other indicators 

within a multipurpose GIS.  Because this analysis is completed at two different points in 

time, the second specific aspect of the contribution made by this thesis is to provide a 

temporal breakdown of land cover change along the Northern Corridor of the Bangkok 

Metropolitan Area, in the provinces of Pathum Thani and Nonthaburi.  This change is 

examined through an integrated analysis of several indicators of environmental stress.  The 

extraction of useful data from RS imagery for GIS-based analysis of urban growth at the 

periphery allows the results to be fed back into policies that facilitate urban growth 

management.  Through this, SUEM practice can be either initiated or improved further at 

the urban periphery of Bangkok.   

1.3 Structure of the Thesis 

In Chapter 2, literature on sustainable development, urban environmental 

management and their intersections is reviewed.   This discussion comprises multiple aspects 

of the concept and principles of SUEM.  The review further considers the role of spatial 

information technologies in fostering SUEM in developing countries.  The literature review 

combines the use of satellite remote sensing and GIS information technologies to make 

operational the conceptual model of SUEM.   
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Chapter 3 builds from Chapter 2 by presenting a detailed description of the research 

design for the thesis.  The study areas selected in the Northern Corridor of Metropolitan 

Bangkok are discussed and the methods of analysis used in the thesis are summarized.    

Chapter 4 presents and discusses the results.  The accuracy of the remote sensing 

(RS) imagery analysis, including road feature extraction and temporal land use change 

analysis, is assessed and the subsequent integration of the extracted image features is 

analyzed with socio-economic data derived from the latest census of Thailand.  This allows 

assessment of the effectiveness of the combination of RS data and GIS to detect land use 

change and subsequent indictors of potential environmental stresses at the rural-urban 

fringe. 

Chapter 5 presents the conclusions derived from the results of the thesis.  Some 

recommendations for further research are presented pertaining to the methods and the 

overall effectiveness of the process. 
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CHAPTER 2 

 

SUSTAINABLE URBAN ENVIRONMENTAL MANAGEMENT &  

SPATIAL INFORMATION TECHNOLOGY 

 

This chapter first discusses the concept of sustainable development.  The role of 

sustainable development in policy and planning at various levels is then discussed, with a 

focus on how the concept is applied in developing countries.  Next the concept of urban 

environmental management is explored.  Subsequently, both concepts are combined into a 

unitary entity termed sustainable urban environmental management (SUEM).  This new 

concept is then developed in the context of modern information technologies, especially 

those that focus on visualizing and analyzing spatial data relative to urban environmental 

stress.   

The processes of making the concept of SUEM operational utilizing spatial 

information technologies (SIT) are discussed next.  The integration of Remote Sensing (RS) 

and Geographic Information Systems (GIS) is first reviewed, with subsequent individual 

focus for each in terms of their use in developing countries.  In particular, the use of RS for 

skeletal road extraction is reviewed in detail.  From these two data sources, the generation of 

a multi-purpose, multi-source GIS database is discussed.   

To unite the main components of the preceding review, an integrated model for the 

role of SIT in SUEM is presented.  This overall model demonstrates the linkages between 

SUEM and SIT by building on the concepts of sustainable development, urban 

environmental management and SUEM and defining the lineage between these concepts and 

the use of SIT to operationalize the process of environmental stress detection.  Lastly, based 

on the operational portion of this model, a related operational model for the use of SIT in 

implementing the concepts of SUEM is presented and discussed.  The use of potential 

indicators of environmental stress derived from RS and ground-based GIS data are then 

reviewed in accordance with their use in this model. 
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2.1 Sustainable Development (SD) 

The term development started to appear in common parlance shortly after the 

Second World War when attempts were first made to bring economically under-developed 

countries in line with more prosperous nations.  Tjatera (1994) defines the type of 

development occurring at this time as an attempt to eliminate differences in living standards 

between people living in developed and developing regions of the world.   Typically, each 

country would strive for prosperity with little regard for any potential impacts of this 

progression on other countries.  In accordance with Tjatera’s definition, many methods of 

‘development’, including monetary and fiscal policies and importation of foreign methods of 

production, were attempted in order to bring lagging countries up to the standards set by 

developed nations.  However, inequities related to financial prosperity and rates of 

development inevitably appeared within regions in developing countries.  Many of these 

inequities were later attributed to causing environmental degradation, disease, and increases 

in uncontrolled human migration in certain areas, as non-equivalent access to resources left 

some regions in better economic condition than others (Zha, 2000; Tjatera, 1994).  After 

several decades of attempting to import varying western growth models of development 

based on industrial production, it became clear that something more was needed to ensure 

that development would occur in a more environmentally sound manner. 

Since the early-to-mid-1980s, when the environmental awareness movement came to 

the forefront in western society, the concept of sustainable development (SD) has become 

an overriding principle in the development of nations.  The concept of SD was introduced 

by the International Union for the Conservation of Nature in 1980 when they revealed their 

framework for world conservation (Portnov and Pearlmutter, 1999).  SD can be defined as a 

shift from singular economic policies designed simply for maximizing economic growth to 

policies designed to reflect the need to consider ‘sustaining’ natural resources and taking into 

account social and cumulative impacts of development (Tjatera, 1994).  The United Nations 

(1996) defines SD as a process that meets the needs of the present without compromising 

the ability of future generations to meet their own needs.  Based on both Tjatera and the 

United Nations (UN) definitions, it is easy to see the need for such policies in guiding urban 

development, particularly in developing countries, where the needs of future generations 

have infrequently been taken into account in the search for economic growth and prosperity.   
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The publication ‘Our Common Future’, by The World Commission on Environment 

and Development in 1987, has become the definitive statement on global sustainable 

development and the environment.  The report notes that few city governments in the 

developing world have the power, resources, and trained personnel to provide their rapidly 

growing populations with the land, services, and facilities for an adequate quality of life.  The 

report also states that in terms of deteriorating infrastructure, environmental degradation and 

sustainable development, urban centres in developing countries are in a state of crisis.  The 

commission recommends seven strategic imperatives designed to allow nations to move 

away from destructive processes of growth and development and to follow a path of SD that 

allows environmental policies and development strategies to be integrated.  These include: 

1) reviving growth;  
2) changing the quality of growth;  
3) meeting essential needs for jobs, food, energy, water, and sanitation; 
4) ensuring a sustainable level of population; 
5) conserving and enhancing the resource base; 
6) reorienting technology and managing risk; and  
7) merging environment and economies in decision making. 

(WCED, 1987) 

Ultimately, because SD often only occurs with painful opportunity costs its 

procurement must rest on the political will of governing bodies.  In the broadest sense, the 

strategy for SD endorsed by the World Commission sought to promote harmony between 

humanity and nature.  In the pursuit of SD, and to meet the strategic imperatives noted 

above, they specifically noted the need for improved technological capabilities in DC.  The 

use of IT (specifically SIT) in DC is addressed in a subsequent section of this chapter. 

The concept of SD can be divided into its two parts, sustainability and development.  

Portnov and Pearlmutter (1999) further subdivide sustainability into literal, ecological, and 

social aspects.  These aspects respectively represent the sustainability of anything that 

comprises the ecological basis of human life and the social basis of human life respectively.  

In the same manner, they sub-divide development into process, growth and change and 

objectives.  Process and growth and change can be interpreted as sustaining growth while 

objectives represent the attainment of basic needs, both in terms of the semantics of 

sustainable development.  The concepts of SD addressed here provide the framework 

necessary for practising sustainable urban development.  These include environmental, 
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economic and socio-demographic dimensions.  Each of these dimensions must be addressed 

for SD to occur in a developing country context. 

Considerable progress has been made in the last ten years on innovation and 

implementation of policy in regard to the goals of SD.  This is partially evidenced in the 

economic growth and substantial investments in health and education by countries in Asia 

and the Americas  (CIDA-c, 1997).  However, there is a lag in moving towards SD policies 

in cities in most developing countries.  The ability to assess cities in terms of their 

sustainability and their adherence to growth goals that subscribe to the principles of 

sustainability is difficult.  To assist with this, Satterthwaite (1999) outlines five broad 

categories of environmental action within which the performance of all cities should be 

assessed.  These include: 

1) controlling infectious disease and the health burden they impose on urban 
populations; 

2) reducing chemical and physical hazards within the home, workplace, and wider 
city; 

3) achieving a high quality urban environment for all urban inhabitants (e.g. park 
space); 

4) minimizing the transfer of environmental costs to the inhabitants and ecosystems 
surrounding the city; and  

5) ensuring process towards sustainable consumption (this can be defined as 
ensuring people’s consumption needs without undermining environmental 
capital). 

 

The first three points fall under the realm of meeting urban residential needs, while 

the latter two are more problematic in that they have environmental impacts and are difficult 

to administer through the conventional mandate of local authorities (Satterthwaite, 1999).  

These five indicators, while useful, are still difficult to use.  The primary reason for this lies 

with the unavailability of data of sufficient quality required to undertake the type analyses 

required.  For SD development to occur, areas of potential environmental stress that may 

emerge at the urban fringe need to be detected quickly and accurately analysed (see Figure 2-

1).  The rapid population growth occurring in DC and the subsequent modification that 

occurs in terms of new and existing urban infrastructure to support this population growth, 

is the driving force behind the creation of these areas of potential environmental stress.  

Hence, SD is needed in cities in DC to ensure that once areas of environmental stress are 
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detected, proper planning and development policies can be applied to these areas to promote 

orderly development and prevent social and environmental degradation. 

 

 

Figure 2-1: SD within the Integrated Framework 

2.1.1 Future Sustainable Development Strategies 

Future strategies for SD will more than likely continue to emphasize the recent focus 

on forms of management that are based on information and knowledge.  In this context, the 

Canadian International Development Agency (CIDA) identifies in its agenda for SD 

strategies for the next three years, a goal to establish itself as a leading international 

knowledge-based organisation (CIDA, 2001).  Their strategy includes designing approaches 

to capture and share knowledge and expertise between the organization, agencies and 

partners in developing countries (CIDA, 2001).  This type of strategy has been, and will 

continue to be, important to the implementation of SD practices in developing countries, 

particularly in terms of providing knowledge and technological expertise.  If organizations 

such as CIDA can continue their hands-on involvement with institutions and non-

government organizations, SD will have a better chance of success.  This is evident through 

the tremendous changes that have occurred in DC over the past fifty years due to the 

unprecedented development cooperation administered by organizations such as CIDA 

(CIDA, 2001).  In terms of sustainability and livelihood, de Roo and Miller (2000) note in 

their argument for compact cities and SD that the effect of undesirable environmental 

activities are not limited to the location in which the activity occurs.  Over time they will 

spread to affect sustainability in larger areas.   
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2.2 Urban Environmental Management in Cities in Developing Countries 

Historically, the interaction between the many participants involved in urban 

environmental management (UEM), including local government, citizens, industry and 

planners, has been weak and ineffective (Srinivas, 1997).  More specifically, as these 

participants attempt to implement policies and plans, their general goal is the management of 

urban growth with respect to environmental problems and their causes and effects.  In 

attempting to provide protection for the natural environment in the face of urban growth, 

sound growth management involves many layers of management policies.  For example, 

many priorities need to be taken into consideration, including depletion of natural resources, 

human-environment interactions, environmental degradation, health and productivity or 

resource stocks when attempting UEM (Srinivas, 1997).  Unfortunately, to make 

encompassing and broadly applicable decisions in terms of urban growth, while respecting 

the limiting factors of each of these priority items, is nearly impossible. 

The urban environment is represented by a broad range of heterogeneous land use 

and land cover classifications.  Attempts at managing the urban environment in DC with 

sound planning, similar to that found in most cities in North America, have been practiced 

in DC for decades.  However, these management attempts have, in many cases, been 

unsuccessful.  In general, the reasons for the failure of policies and programs in these cities 

are not hard to find.  Laquian (2000) notes that the economic and social forces favouring 

urban growth have been too strong to allow for urban planners and residents to negotiate 

successfully the scale of development that has occurred over the last several decades.  Often, 

in many Asian countries, just to deal with the rapid development, planning policies have 

channeled urban sprawl into specified development nodes rather that attempting to restrict 

development.  Because of this, a serious problem concerning the loss of rich agricultural 

lands surrounding mega-urban developments has become apparent (Laquian, 2000). 

It has been demonstrated that the processes that constitute urban activity have far-

reaching and long-term effects not only on the immediate boundaries of cities, but also on 

surrounding region(s).  Basically, the urban environment consists of two components: 

resources and processes.  Resources include land, water, energy and human components 

while processes include industry, transportation, migration, construction, and residence 
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(GDRC, 2001).  As processes occur that transform resources into other useable products 

and services, or as humans migrate, several different ramifications are possible.  These 

effects can be either positive, such as practical products that create economic growth, 

education and an increased knowledge base, or negative, such as pollution and waste 

generation.  Management of these processes becomes the focus where the natural 

environment meets the urban environment and it is these geographic interface areas where 

side effects tend to occur.  UEM needs to be the focal point for many government policies 

in cities in DC.  The objectives of UEM need to facilitate the management of 

1) the urban working and living environment, 
2) environmentally-sound urban growth and development, 
3) conservation and protection of urban natural and cultural environments, 
4) the prevention of environmental deterioration, 
5) the evaluation and mitigation of impacts of urbanization, 
6) urban transportation, 
7) health and safety in urban areas, 
8) urban waste, and 
9) monitoring of changes in urban environments. 

(UEM, 2001) 
 

The objectives of UEM and its subsequent policy generation fit into the framework 

of this thesis as shown in Figure 2-2.  As with SD, the need to identify areas of potential 

environmental stress that has emerged due to development must be completed through 

UEM because UEM is more likely to occur if policy and planning guidelines are designed to 

meet the objectives of UEM outlined above.  To facilitate the creation of these policy and 

planning guidelines, both quantitative data and qualitative information is required.  Data 

enable planners and others involved with managing growth to make decisions regarding 

issues, including the loss of natural resources and the controlling of pollution, from a more 

informed vantage point.  Further, the effectiveness of an urban management policy must 

also be measured in terms of the effectiveness of information dissemination (Srinivas, 1997).  

Without public education and liberal support from the necessary stakeholder groups, the 

provision of UEM to ensure the prevention or detection of potential environmental stress 

cannot be achieved. 
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Figure 2-2: Location of UEM in Integrated Framework 

In the face of rapid expansion, the need to plan cities in developing countries is 

cause for concern, especially in terms of environmental sustainability and UEM.  This is 

because many cities in these areas do not have the resources, financial and human, to 

facilitate sustainable environmental management.  Additionally, growth in DC cities is too 

often being driven by a strong desire for economic prosperity and increased productivity.  

The reason for the drive to increase productivity is, simply stated, profitability.  Castells 

(1996) develops this theory in more detail by discussing how a company’s desire for profit 

maximization and profitability often far outweighs its desire for productivity.  To remain, 

and more often to become, profitable in the global economy, increased productivity 

becomes necessary for companies in developing countries.  However, more often than not, 

this increased productivity is achieved through impacts on natural resources and the 

environment.   

In a situation where information is integral to facilitate planning decision making, 

planners in developing countries have limited resources at their disposal (Masser and 

Campbell, 1989).  A problem such as the bureaucratic inability to share resources leaves 

many individuals and groups information poor (Nghi and Kammeier, 2001).  Given this 
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reality, the key to realizing effective planning and urban management becomes the 

development of effective strategic planning.  In an attempt to achieve this, UEM in the past 

has often come in the form of importing urban planning practises from developed countries.  

For example, Ngwainmbi (1999) notes that the exportation of technology to developing 

countries can be appropriate, but only when the technology causes social and infrastructural 

change.  He continues to note that since the Second World War, industries in developing 

countries have focussed on the transfer and creation of value-oriented technology.  

However, this has not been successful in many cases, as the technology was rendered useless 

because its function was not predetermined.  More often than not these imported 

technologies, which have been relatively successfully in cities in developed nations, are not 

nearly as effective in the context of a developing city.  Because of this, new and innovative 

solutions involving information technology have been tried frequently in cities in DC in an 

attempt to compensate for unsuccessful planning practice (Bishop et al., 2000).   

2.3 Sustainable Urban Environmental Management (SUEM) 

The concepts of SD and UEM are, in some ways, interchangeable in their meanings 

and principles.  However, in the context of this thesis, environmental management is 

identified as a primary component of SD, and as such, it is encompassed within the concept 

of sustainable urban environmental management (SUEM).   

There are many new challenges facing city planners and those responsible for urban 

policies, as the rate of urbanization continues to increase (Neilson, 1999).  Within the 

integrated framework proposed in this thesis, SD and UEM are linked to produce SUEM, as 

shown in Figure 2-2.  If the escalating population growth in DC is to be met with planning 

and policy frameworks that will provide for viable socio-economic futures, both SD and 

UEM, as defined separately above, must be included in this framework.  The resulting rapid 

increases in demand for employment, natural resources, land and basic urban necessities 

make urban management attempts to improve living standards and to protect the natural 

environment more difficult, but at the same time, more crucial.  This immediate need to 

support SD and UEM must be met through an integrated approach to ensure that cities and 

countries move towards SUEM if there is to be a sustainable future.  A means of assisting 
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the move towards SUEM in developing countries, as outlined in the following section, is 

through the use of data and information technologies. 

2.4 Role of Information Technologies in Facilitating the Goals of SUEM 

To achieve SUEM simultaneously with development, urban planners in developing 

countries need to acquire new planning skills and techniques.  These skills must enable 

planners to recognize and analyse the spatial element of urban development.  Based on the 

Agenda 21 (United Nations, 1992) goals and activities discussed earlier, Low et al. (2000) 

provide an assessment of the impact of communication infrastructure on SD and the urban 

environment.  Their conclusions point to the fact that only some cities around the world 

have adopted programmes for ecologically sound SD.  Although the fact that some cities 

have formulated programs to facilitate ecologically SD is laudable, the rates at which the 

remaining cities make progress towards achieving Agenda 21’s goals and activities will 

substantially determine the world’s future ecological state (Low et al., 2000).   

The inherent differences between cities in developing countries and those in 

developed nations underline why many difficulties exist in the implementation of IT in the 

former.  Bishop et al. (2000) provide seven characteristics of cities in developing countries 

that affect their ability to adopt IT (in general the same factors apply equally to SIT).  These 

include: 

1) rapid growth not being matched by growth in delivery of infrastructure; 
2) urban development often uncoordinated as growth is driven by market forces 

and speculation; 
3) uncoordinated land management and planning laws; 
4) adoption of a prescriptive form of land use planning resulting in longer term land 

uses that are less market sensitive and often not adhered to; 
5) large amounts of squatter settlements and slums resulting from a lack of 

adequate housing; 
6) unplanned developments that present difficulties in providing utilities at a later 

date; and 
7) a complete lack of spatial information infrastructure (and lack of data). 
 

In this context, appropriate technology for SD planning, UEM, and ultimately, 

SUEM, comes down to what is suitable and accessible (Cartwright, 1992).  Quite often in the 

past, a technology proven to be appropriate for application deployment in a developed 
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country has been introduced into developing countries with no consideration of the 

possibility that it may not be as effective in this context as in the other.  Unfortunately, 

different levels of data availability and quality, cultural, and planning needs and requirements 

in these countries have often rendered imported innovations unsuccessful.  

Ramasubramanian (1999) notes that successful or unsuccessful implementation of SIT in 

developing countries can be attributed to many factors, not all limited to the actual use of 

the technology itself.  These might include resource constraints, technical constraints, 

cultural and language barriers, and structural problems (Ramasubramanian, 1999).  Further, 

even though the rate of adoption of information technologies in developing countries has 

been increasing steadily for several decades, questions of their actual penetration and 

effectiveness remain.  The key issue here lies in whether or not the services that are provided 

are relevant and appropriate for developing countries (Menou, 1993).   

To this end, the seven characteristics identified above by Bishop et al. (2000) provide 

starting points for understanding how IT can contribute to, and improve upon, planning and 

policy formulation.  In particular, IT can assist in improving the infrastructure necessary for 

the management of urban growth, which in turn aids the process of SD planning and UEM.  

This potentially includes the processes of managing resources, human and other, that 

convert these resources into various other useable products and services in an 

environmentally sound manner.   

If an effective implementation and deployment of IT can ultimately take place, the 

technology can be effective in rectifying some of the negative side effects of urban growth.  

For example, in the case of SIT, because the rapid growth of cities in developing countries 

cannot be matched by timely infrastructure provision, Hall et al (2001) have shown that an 

integration of RS and GIS technologies can be used to locate and target areas that require 

improved funding for infrastructure provision and, hence, improved quality of life.  In the 

context of this thesis, the processes of utilizing IT in developing countries for SD, UEM, 

and ultimately, SUEM (Figure 2-2), figure prominently in the framework proposed to 

achieve sustainable growth through the use of spatial information technology.  The model 

demonstrates that IT is utilized in conjunction with timely and accurate data.  These data are 

also used in the creation of new urban planning policies.  Subsequently, these policies and 

implemented practices are used in DC to achieve UEM and SD, which are integrated, as 
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outlined in the previous section, to form SUEM.  In parallel to these processes, data and IT 

are also required for SD, UEM and finally, SUEM.  The use of IT in developing countries 

has reciprocal flows with SUEM in developing countries in terms of the notion that IT can 

be used to achieve SUEM.  At the same time, SUEM is also the catalyst for the 

implementation of IT in DC.  

When attempting to implement IT to facilitate SUEM to address aspects of growth 

in a developing city, many factors need to be taken into account.  The first factor that must 

be considered is whether or not the IT in question is, in fact, an appropriate technology.   

Darrow and Pam (1978) define eleven principles of appropriate technology, namely: 

1) be low in capital costs 
2) use local materials wherever possible 
3) create jobs, using local skills & labour 
4) small scale to be affordable by a small group of farmers 
5) understandable, controllable and maintained by villagers without high levels of 

education 
6) be produced in a small fabricating shop, if not in a village itself 
7) facilitate communal work, recognizing that in most of the world decisions are 

made by groups rather than by individuals 
8) use renewable energy resources 
9) make the technology understandable to the people who are using it and thus 

suggest ideas that can be used for further innovations 
10) be flexible so it can continue to be used or adapted to fit changing circumstances 
11) be free of patents, royalties, consulting fees, import duties or financial 

incumberances so that practical plans can be obtained free or at low cost and no 
further payment is required. 

 

 Given a typical lack of capital, the need to create jobs and utilize local skilled labour, 

and the need to make technology understandable to the people using it, many of these 

principles are still applicable.  However, it can be argued that their usefulness may not be 

directly applicable to SIT.  In particular, where SIT is being used to facilitate SD, UEM, and 

SUEM, Darrow and Pam’s principles require further scrutiny.  This is addressed in the 

following section. 

2.5 Role of Spatial Information Technology in Facilitating the Goals of SUEM 

Urban development and land management are also processes that, if implemented 

properly, can benefit from the use of RS and GIS technologies.  Specifically, Bishop et al 
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(2000) point to the success of small strategic applications that can help to establish the value 

of GIS in developing countries.  Small, targeted applications are often more successful than a 

complex and comprehensive GIS due to the lack of well trained and educated persons in 

planning roles in some developing countries.  With targeted applications, such as the 

extraction of road features from RS imagery and ancillary data analysis for growth detection 

and potential urban stress identification, the process and results are produced more quickly 

than an encompassing land information system designed to incorporate too many items at 

too many levels of analysis. 

As noted by Elkington and Shopley (1988), information is the ultimate renewable 

and therefore sustainable resource.  However, as already observed, without adequate and 

accurate information, urban planners in developing countries have difficultly making 

important decisions.  In terms of planning-related issues, spatial information is fundamental 

to accurate decision-making.  To this end, the use of IT in planning has not been fully 

realized in a developing country context.  While communication and information 

technologies are targeted to assist in solving development problems including illiteracy, 

disease and poverty, to name but a few, it is ultimately up to many different individuals, 

organizations, and levels of government to ensure that information processing tools and 

basic information are made available in these contexts (Hanson and Narula, 1990).  Because 

of this, it is important first to understand the level of penetration of SIT in developing 

countries before subsequent projects should be implemented.   

As noted in the previous section, IT, SIT, and their implementation in DC feed the 

process of SUEM while, in turn, SUEM contributes to the processes involved in 

implementing SIT in a DC context (Figure 2-2).  This process is now addressed. 

2.5.1 Information Technology for SD and UEM 

In recent years, advancements in microelectronics-based information and 

communication technologies have contributed to economic growth in both developed and 

developing countries (UNCSTD, 1998).  However, many gaps still exist.  Agenda 21 (United 

Nations, 1992) outlines the gap between available data quantity and quality in regards to the 

desire to achieve more cost effective and relevant data collection.  Further, Agenda 21 notes 

the need to strengthen the capacity of data collection and decision-making, to develop a 
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means of ensuring planning for sustainable development, and finally, to make relevant 

information accessible.  In general, these are desirable, yet very broad goals.  While 

considerable amounts of data do exist, the majority of these data are not useful in many 

cases due to uncertainties related to data validity and accuracy.   

Five activities were identified in Agenda 21 to assist in the achievement of the above 

goals.  These activities include the development of a set of suitable SD indicators; the 

improvement of data collection and use; the improvement of data assessment and analysis 

techniques; the development of an information framework, and the encouragement of 

traditional and indigenous knowledge wherever possible (UNCED, 1992).  Breheny and 

Rookwood (1997) list four key areas that form the basis for developing a strategy to ensure 

future urban sustainability, namely natural resources, land use and transport, energy, and 

pollution and waste management.  However, relatively little is being done in terms of using 

these as indicators to monitor SD.  Bishop et al (2000) note evidence of this inactivity in 

many cities in developing countries in terms of sprawl of informal settlements, increases in 

congestion, air and water pollution, poor infrastructure, and housing decay. 

Additionally, Agenda 21 notes the need for improved data collection to facilitate 

more robust methods of data assessment and analysis.  One method of data collection that 

has been employed for several decades is satellite remote sensing (RS).  However, its 

effectiveness in an urban setting has been limited in the past by the low spatial resolution 

imagery.  As spatial resolution increases, the morphological structure of cities in terms of 

density, textural form, and spread become more visible and hence, theoretically, more easily 

detectible and extractible from satellite imagery.  In terms of data analysis in developing 

countries, Agenda 21 recommends new SIT to fulfil the needs of analysis of data from 

satellite sources.  A review of the literature pertaining to existing use of RS in an urban 

setting is addressed in a subsequent section. 

2.5.2 Spatial Information Technology Penetration   

IT, and particularly SIT, is readily utilized in developing countries.  However, the 

effective implementation and use of SIT is not nearly as extensive.  Many pre- and post-

conditions must be in place before SIT penetration can be effective.  In terms of 

preconditions and SIT, Hall (1993) suggests that Darrow and Pam’s (1978) eleven principles 
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of appropriate technology, discussed earlier, are not satisfied in most contexts.  For SIT to 

penetrate into emerging economies, it first needs to be able to make use of local materials 

and persons whenever possible.  This is often difficult with GIS, as a large amount of 

training is required to make users proficient with the software.  Ramasubramanian (1999), 

Burrough (1992), and Taylor (1991) note a lack of trained personnel as one of the key 

barriers to GIS implementation in developing countries.   

In some cases, the symbolic value of owning a GIS and its associated social status 

also plays a role in effective implementation and use (de Man, 2000).  This can have two 

effects.  First, the social status may be more important than the actual use and results 

achieved from the GIS.  de Man (2000) points out that this and other non-concrete results 

from GIS implementation can have a significant and positive effect on organizations.  

Second, the associated status can also be used as motivation to derive results from the GIS 

implementation.   

Hall (1993) goes on to note that a relatively high cost and performance requirements 

of hardware and software is required for a spatial information system to render the 

technology ‘socially’ inappropriate in most developing countries.  Burrough (1992) confirms 

this viewpoint stating that the costs of computer hardware and software, costs of training, 

and costs of data acquisition, can make these activities economically prohibitive.  Given the 

financial constraints alone, Darrow and Pam’s (1978) requirements of being low in capital 

costs and being free of patents, royalties, consulting fees, import duties or financial 

encumbrances, it seems unlikely that a GIS is an appropriate technology for many 

developing countries, further impeding the case for the use of SIT in achieving the goals of 

SUEM. 

Finally, it should be noted that Hall (1993) qualifies the above statements by noting 

the fact that these principles of appropriate technology focus mainly on production 

technology.  In this sense, while the Darrow and Pam’s (1978) principles are applicable only 

in some ways rather than completely to the implementation of SIT.   It is possible that the 

differences in production technology and SIT may be too great to allow for a direct 

comparison in this manner.  Other factors including initial expenses, capital costs, and 

import duties may also render the comparison somewhat fallacious. 
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Given the relatively limited productive use of SIT in developing countries, it is 

important to understand how SIT has been used in the past to facilitate better development 

policies and planning in terms of SUEM.    

2.5.3 Local SIT Development for SUEM 

According to the Latin American Demographic Centre (CELADE), there are six key 

functions that technology must facilitate when employed at the local level in a developing 

country.  These include: 

1. processing of census microdata for user-defined small-areas;  
2. multi-sector databases; 
3. utilization of present with past censuses; 
4. digitized census cartography; 
5. spatial display and analysis of the data on maps; and 
6. small-area population estimations and projections.  

(CELADE, 1995) 

However, several barriers persist in realising these functions, especially in terms of 

data collection processes and data validity.  The processing of census microdata for user 

defined small areas is only now being realized in the relatively more developed of the 

developing countries around the world.  For example, The Information Processing Institute 

for Education and Development at Thammasat University, Bangkok, Thailand, has been 

developing a village level database of socio-economic characteristics since the early 1990s.   

While the collection of these data has been proceeding for several years, it is unclear whether 

they have been fully processed and put to their full potential by any persons or 

organizations.  Further, the data are only currently available from Thammasat University in a 

large dBase (dbf) file that has several different elements of information in one field within 

the database. Because of this, the data require time-consuming pre-processing before they 

are useful for any actual analysis.   

This type of problem is not uncommon in most developing countries.  The United 

Nations (1996) noted that for the process of development to occur in a sustainable manner, 

data integrity is crucial and that currently in developing countries, there is a need to improve 

on the lack of quality data for decision support analysis.  Inconsistencies in much of the data 

currently available in developing countries and a virtual absence of any metadata only 

compound the inability to determine the validity and/or accurateness of these data. 
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In addition to problems with data quality and availability is the fact that GIS 

technology may not fully meet the information needs of planning or SUEM.  Couclelis 

(1991) lists four basic functions in this regard, namely operational, management, strategic, 

and communication and she states that it is possible that the concept of geographic space 

that underlies underlying GIS technology may be quite different to the notion of space 

embodied in managing urban areas.  She notes that planning’s notion of space can include 

spatial and non-spatial frameworks, such as legal and fiscal matters, as well as quantitative 

(census data) and qualitative (verbal descriptions) spatial information.  Within this context, 

important differences between site and situation are addressed.  While site represents the 

attributes of a specific location, situation “is what characterizes a location by virtue of its 

being part of a spatial structure involving other locations”  (Couclelis, 1991).  Current SIT 

can address site effectively using its spatial and location linkages (GPS, co-ordinate systems, 

etc.).  However, it is limited in its ability to provide the descriptive characteristics of a given 

situation.  Until situational factors, such as neighbourhood type, political conditions, and 

local perspectives can be included in the decision making process, no level of site analysis 

can be entirely accurate or conclusive.  Because of this, the next step in the development of 

SIT in both developed and developing countries should incorporate both site and situation 

into analyses.   

To address these points in more detail, the past and present operational use of SIT in 

developing countries needs to be thoroughly reviewed.  As such, the next four sections 

review the operational use of SIT to achieve SUEM from RS, GIS and integrated analysis 

perspectives. 

2.5.4 Operationalizing SUEM with SIT 

As noted in the previous section, the process of operationalizing SUEM continues to 

be fraught with difficulties in many developing countries.  However, it is argued here that, 

when used appropriately, IT and SIT tools can make an important contribution in making 

the concepts of SD and SUEM operational.  In this context, one of the main objectives of 

this thesis is to create a reliable process of road network identification, extraction and 

subsequent integration within a multi-source and multipurpose GIS database to help 

facilitate SUEM.  To date, this is something that does not currently exist within a developing 
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country context.  There is, however, quite widespread use of SIT to address related issues 

and the following sections review the use of existing RS and GIS applications and their 

findings.  The purpose of this is to show the lack of an adequate process of integrating RS 

imagery and ground-based socio-economic GIS data to generate indicators of areas of 

potential environmental stress.   

The inclusions of RS and GIS for SUEM, shown in Figure 2-3, flow from the need 

to utilize SIT in DC to achieve SUEM, as addressed in Sections 2.2 through 2.5.3.  The left 

hand side of the figure outlines proposed temporal RS analysis steps in the detection of land 

use change and subsequent integration with continued GIS analyses.  The right hand side 

follows parallel temporal analysis of GIS based socio-economic data, which, as noted above, 

is integrated with the RS change detection to derive the locations of potential environmental 

stress.  The results of this integration are further used to select an area(s) for continued RS 

analysis in the form of transportation feature detection and extraction.  Through closer 

examination of existing RS and GIS applications in the next three sections (2.5.5 through 

2.5.7), evidence of the need for improved processes of analysis and subsequent integration 

of the two technologies is further revealed. 

2.5.5 Remote Sensing (RS) 

Since their inception, RS technologies have provided researchers and practitioners 

with the ability to produce land cover mapping.  The first tangible combination of space 

exploration and remote sensing took place after World War II when cameras were attached 

to rockets and launched from New Mexico (Lillesand and Kiefer, 1994).  These images were 

not of high quality, but they did initiate the interest of researchers in taking pictures from 

space.  Following this, in the early 1960s, weather satellites captured images of clouds with 

the coarse earth’s surface as the background.  Since then, many satellites with various sensors 

have been put into use by many countries for the general purpose of earth observation. 

Two of the most successful and influential satellite programs include the Landsat 

program in the United States and the SPOT (Systeme pour l’Observation de la Terre) 

program in France.  The first Landsat Mission was in 1975 and since then seven missions 

have been completed, all but one successfully.  The SPOT program has produced four 

satellites since 1986 with a fifth scheduled for launch before the end of 2002.  Both the 
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Landsat and SPOT programs have improved and refined their data collection methods since 

the original launches and today are amongst the leaders in breadth of wavelength coverage 

and improved image spatial resolution.  Most recently, the launch of the private satellite 

IKONOS by Space Imaging Inc. in 1999 marks the availability of the world’s first 

commercial high-resolution (< 2 meters) satellite imagery (Tanaka and Sugimura, 2001).  

Also, the launch of QuickBird on October 18th 2001 by DigitalGlobe, which offers 

resolutions similar to IKONOS, will bring competition to the high-resolution commercial 

satellite market. 

 

Figure 2-3:  Integration of RS and GIS Technologies for SUEM 
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Morain (1998) lists the following items as the motivational forces behind the 

development of remote sensing technologies: 

1) need for better information about the earth's surface 
• spatial distribution of natural resources 
• effective management of renewable and nonrenewable resources 

2) national security 
• assets for maintaining security through observation 

3) commercial opportunities 
• still being tested via recent launches of privately owned satellites  

4) international co-operation 
• co-operation to better understand, manage, share, and protect earth’s 

resources 
5) international law 

• to ensure the facilitation of free and open exchanges of data and information. 
 

These points outline the main uses of data collected via RS since its inception and 

subsequent development.  These uses are applicable to planning and policy making needs in 

cities in developing countries.  Because RS can provide land cover data relatively swiftly and 

efficiently, it can be concluded that it is a suitable vehicle for planning and policy 

development (Ulbricht et al., 1995).  Using RS, planners can better understand the urban 

environments they work in, thereby assisting in problem solving and decision-making 

processes.  In this context, Da Costa and Cintra (1999), in their paper addressing the use of 

RS for metropolitan environmental analysis in Brazil, note the abilities of SPOT and Landsat 

imagery in the areas of research support, analysis of spatial dynamics and urban morphology.  

They further note that the methodology, which includes the use of RS analysis, permits the 

study of urban environments in a complete, rapid and precise manner, all at a relatively low 

cost (Da Costa and Cintra, 1999).   

RS has been extensively used in the study of land cover and land use change across 

the globe.   While this work has had the common goal of facilitating identification, 

classification and changes in the distribution of land cover and land use, approaches and data 

sources have varied.  Land cover can be defined as the physical composition of the land 

under examination, or what can be recognized from the air, while land use is the actual usage 

or productive application of the land.  For example, land cover could be forest, grassed 

vegetation, or water body whereas a land use would be agriculture, urban infrastructure, or 
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hydroelectric reservoir.  Because of the many satellites and sensors that are currently orbiting 

the earth, researchers have several options when it comes to selecting the sensor that best 

targets the location and needs they are interested in.  For example, Martinez-Casasnovas 

(2000) implemented a cartographic and database approach for land cover/use mapping in 

Spain.  His approach began with the development of a hierarchy of terrain object classes to 

support classification results.  The results of this hierarchy were then transformed into basic 

mapping generalizations, which were in turn translated into a relational database focused on 

structuring data in order of data element relationships.  He concluded that this approach to 

image classification can be viewed as advantageous from the user’s point of view since land 

cover / use classes were structurally broken down into basic mapping units that could be 

used in a variety of planning applications.   

Similarly, Makarovic (1995) discussed image-based mapping, listing image 

interpretation and feature extraction, stereomodel orientations, sampling and digitizing, 

geometric transformations and field completion as the five main mapping techniques.  The 

technique of particular interest in his paper was image interpretation and feature extraction.  

Makarovic indicated that feature extraction was easier and more effective when high-quality 

(higher resolution) images were utilized.  Because of this, image-based mapping was best 

suited to semi-detailed and coarse thematic mapping, where high accuracy was not required.  

This continues to be the case with even higher resolution satellite imagery. 

Not all RS image analysis involves straightforward classification processes.  Several 

computing algorithms including edge detectors, neural networks, and dynamic programming 

techniques have been developed to analyze land cover with RS data.  For example, Kalluri et 

al. (2000) used a hierarchical connected components algorithm to undertake image 

segmentation by clustering pixels into homogeneous regions.  They then connected these 

components relative to uniform pixel reflectances.  Kalluri et al. (2000), conclude in their 

discussion that recent developments in faster, high-end servers and workstations allowed the 

development of complex mapping and computational processes that were cumbersome to 

implement in the past.  They recommend the use of multiple processors in data processing 

for the computationally intensive tasks of image enhancement and segmentation and they 

noted that new processing technologies will ensure the implementation of remote sensing 

algorithms to study land cover dynamics at a global scale (Kalluri et al., 2000).   
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Population analysis using RS can also provide valuable information about urban 

growth dynamics.  In this context, Entwisle and Walsh (1998) examined the 

interrelationships between population and environment in northeast Thailand by 

strengthening the union of social and spatial data, techniques, and perspectives.  To facilitate 

this, imagery from Landsat MSS and TM sensors were used as well as the SPOT multi-

spectral and panchromatic sensors covering an approximately twenty-year period from the 

mid 1970s to 1990s.  Their findings suggest that RS data can provide a valuable perspective 

on land cover and land use change.  Using multi-source and multi-temporal RS imagery, they 

were able to examine inter-seasonal variations of the landscape that were otherwise difficult 

to assemble and acquire.  The data allowed enhancement of the overall perspective of their 

study when integrated with the ground-based population surveys.  However, for temporal 

analysis, several limitations affect remote international locations.  For example, archived data 

are often difficult to find, assemble and acquire and few alternate views of the landscape are 

offered from the commonly available satellite systems (Entwisle and Walsh, 1998).   

In a related study, Dutra and Huber (1999) examined feature extraction for land use 

classification using Earth Resources Satellite Synthetic Aperture Radar (ERS SAR) data.  

They confirmed the notion that specific feature extraction in a land cover classification is 

inherently difficult given that it is both dependent on the input data and on the classifier 

used.  Their method involved feature selection followed by classification using the 

maximum-likelihood classifier and an artificial neural network.  Because of their use of SAR 

data, they were forced to employ a refining Lee filter to remove the speckle inherent in the 

image, a technique often employed with SAR data (Hall et al, 2001).  Ultimately, Dutra and 

Huber (1999) found that their classification accuracy, similar to most classification methods, 

was excellent in terms of the training set, but worse for the validation set and subsequently 

for the complete image. 

This brief review suggests in general that the use of RS technologies in developing 

countries is viable, thus affirming the general approach adopted in this thesis.  However, 

Foody (1995) noted that the full potential of using RS as a source for land cover data has not 

been fully realized to date, particularly in terms of the integration of this data source with 

GIS.  The integration of RS technologies with ground-based GIS to analyze land use at the 

rural-urban fringe, specifically in order to detect land use change and subsequent indicators 



 28

of potential environmental stresses, is now considered in more detail.  The primary 

landscape feature used to identify new urban development in this research is the 

transportation network.  Hence, research on the detection and extraction of roads from RS 

imagery is reviewed in the following section. 

2.5.6 Skeletal Road Extraction 

O’Sullivan (2000) stated that mobility, defined as the ability of people to travel over 

distances, increases due to the necessity of people to move to and from homes, places of 

employment, retail outlets and leisure facilities.  Further, he noted that as these localities 

become more geographically dispersed, the impacts on and requirements of, the existing 

transportation network increases, precipitating growth in the network.  Because transport 

and transportation networks are in need of major improvements in cities in DC, there exists 

a necessity for being able to locate and map the road networks in a more timely and efficient 

manner.  This not only includes existing routes, but must also include the need for better 

planning of new routes as well as the need to detect and monitor new roads as they develop 

(O’Sullivan, 2000).  This temporal examination of old and new roads is necessary to facilitate 

the analysis of land use change over time as secondary urban infrastructure grows around the 

developing transportation network.  As noted above, these needs form the fundamental 

basis for this thesis.   

Automated extraction of man-made and natural objects from aerial photography and 

satellite imagery is one of the fundamental tasks in image analysis (Kim and Muller, 1995). 

Attempts to extract specific features automatically from digital images have been in practice 

for more than fifteen years using many different methods and algorithms (Gruen, 1995).  

The desire (and need) to extract linear features has been of interest in the private sector, 

government and the military.  A basic objective of this thesis is to establish an operational 

process of linear (road) feature identification from RS source imagery and subsequently to 

extract these features into a GIS.  The term ‘extraction’ itself can be vague at times 

(Doucette et al., 2001).  Here, the task of road extraction addresses the issues of both road 

identification and subsequent delineation.  Once extracted, these features are then added to a 

multi-source GIS database for analysis in conjunction with other indicators of urban growth.  

This database allows potential environmental stress locations of growth and change to be 
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identified.  While various processes of linear feature extraction are well documented, as 

reviewed below, the ability to identify and extract features and automatically input them into 

a GIS for analysis is not thoroughly addressed in current research. 

Several researchers have examined the possibilities of extraction and classification of 

man-made features in urban environments including, for example, buildings and roads 

(Trinder, 1995; Haala and Brenner, 1999; Shettigara et al., 1995; Sowmya and Trinder, 2000; 

Guindon, 2000; and Baltsavias, 1996).  Shettigara et al. (1995) defined the terms ‘artificial’ 

and ‘man-made’ as objects that have been artificially created using synthetic or natural 

materials.  Before any extraction and/or classification of such features from RS imagery can 

take place, the geographic context of the images must be understood.  Context, in this sense, 

can be defined to include, using Couclelis (1999) terms, the site and situational dimensions, 

as well as the spectral and spatial resolutions of the source imagery.  The differences between 

site and situation were addressed earlier.  However, this can be an important consideration in 

terms of representing inherent or local knowledge in the context of RS images.  Factors such 

as the size of the object in question with respect to the image pixels under examination 

influence the ability to extract and classify man-made features from other information 

contained in the image.  Even after understanding and accounting for these factors, specific 

feature extraction has traditionally been completed only via manual or semi-automated 

methods (Sowmya and Trinder, 2000).  Hence, recent attempts have been made by 

researchers at automating the feature extraction process.   

Methods used include object recognition models using spatial/spectral/contextual 

attribute combinations in high resolution imagery for recognition of such features as roads 

and buildings (Guidon, 2000); digital ortho-photos through 3-D extraction from stereo pairs 

(Baltsavias, 1996); finding edges of man-made objects and extracting them by mapping the 

boundaries between the man-made and adjacent natural objects (Shettigara et al., 1995); and 

using laser scanners to classify and extract buildings and trees from urban environments 

(Haala and Brenner, 1999).  The success of these methods has been varied.  However, each 

has achieved the extraction of features via either manual or semi-automated techniques.   

As more methods are developed for data acquisition via successful identification and 

extraction of features for digital mapping and GIS, knowledge representation modeling skills 
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are used to adapt methods to particular characteristics of the image (Sowmya and Trinder, 

2000).  In particular, the extraction of linear features has received a great deal of attention 

and, subsequently, different methods of road extraction have been developed and tested.  

These include, but are not limited to, map-image modeling, edge detection and filtering, 

dynamic programming, LSB-Snakes, neural networks, laser scanning, and 3-D edge 

detection.  These techniques are now described. 

Land development and hence land use change from one state to another, typically 

occurring around existing built-up areas and along roads (Yeh and Li, 2001).  As these 

changes are invoked, they become the triggers for further development through a cyclical 

process that is both temporally and spatially variable.  As roads appear, typical urban 

landscapes develop naturally along and adjacent to the roads.  Consequently, this feature 

represents the catalyst for new urban development.   Hence, the extraction and analysis of 

linear features such as roads and the edges of areas of land use change from digital imagery is 

centrally important in the processes of SUEM.   

As noted above, the analysis of satellite imagery for linear feature extraction has been 

extensively researched (Mayer and Steger, 1998; Steger et al., 1995); Fiset et al., 1998; Jedynak 

and Roze, 1995; and Barzohar and Cooper, 1995).  Modeling methods such as abstraction, 

defined by Mayer and Steger (1998) as the increase in the degree of simplification and 

emphasis, are used to detect relatively homogeneous regions in an image.  In the case of 

roads, their surface and reflectance is typically homogeneous and of a different brightness 

than the surrounding areas.  Using this assumption, Steger et al. (1995) extracted a partial 

road network.  However, shadows present in the image produced erroneous road segments 

in some areas.  

Fiset et al. (1998) modeled map-image matching for road network updating.  Because 

the updating of topographic maps is traditionally a tedious and time-consuming task, they 

sought to automate the process.  Their process began with the rasterization of the existing 

road network.  The rasterized road network map was then matched to a classified image to 

locate potential new roads that could be derived from the image.  The matching process 

used two algorithms.  The first sought to match the rasterized map-road with the 

corresponding image-road network.  The second algorithm was designed to search 
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automatically for new road segments, which were added to the existing road map.  The two 

main problems that were encountered using this approach included the tendency for the 

second algorithm to confuse road pixels with the spectral signature of buildings adjacent to 

the road segments and missing segments that result in too few relevant pixels in certain parts 

of the image.  To match effectively the new road segments with the existing network, a 

supplementary step was used to trace the segments with a seven by seven search window at 

each intersection coordinate in the database.  This supplementary pixel analysis, in 

conjunction with the map-image mapping process provided results that were far better than 

either method singularly.   This process represented an effective and efficient means of road 

detection and map updating.   

Edge detection and filtering have also been used for linear feature extraction 

(Tripathi and Gokhale, 2000; Karimi et al., 1999; and Vosselman and de Knecht, 1995).  The 

process of roadway feature extraction consists of three main tasks, including image 

acquisition, feature extraction, and input to database management systems.  Karimi et al. 

(1999) used the Thin and Robust Zero-Crossing edge detector for this purpose.  First, roadways 

in high-resolution images were manually seeded.  Seeding was defined as the process of 

human input and interpretation during the extraction process to provide the classifying 

computer algorithm with information pertaining to accurate road location.  Seeded segments 

were then processed with the edge detector to locate and extract road features in a semi-

automatic manner.  This research using high-resolution imagery (1 metre) showed promise 

as a means of road feature extraction.  However, before it could be fully automated and 

implemented effectively, several aspects needed to be refined.  These included: 

1) image intensity to noise across road surfaces; 
2) shadows cast by buildings, trees, etc.; 
3) barriers like bridges and overpasses; 
4) occlusion due to vegetation and topography; 
5) confusion between roads and other man-made construction; 
6) markings on the road; 
7) differences in road materials used; 
8) traffic pattern differences on road; 
9) position errors caused by elevation change; and 
10) limitation of the information content on the images. 

(Karimi et al., 1999) 
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These problems are not only applicable to the application of edge detection 

algorithms.  They also cause problems and inconsistencies for all methods of feature 

identification and extraction and need to be researched further before fully automated 

processes can be realized.  Because the extraction of detailed roadway features from satellite 

imagery for input into a database management systems, especially a GIS, has not been 

extensively reported in the literature, it represents a gap in the research and an area that 

deserves further exploration (Karimi et al, 1999). 

Since fully automated methods, with no human assistance, for conversion of 

remotely sensed images to digital maps are still generally unfeasible, semi-automatic methods 

that involve computer and human interaction are the most viable alternative (Vosselman and 

de Knecht, 1995).  In this context, road identification by filtering can be used to estimate the 

parameters that describe a road by shape and position.  Vosselman and de Knecht (1995) 

used a Kalman filter to detect and remove outliers in observed image feature characteristics 

to facilitate continuous feature mapping.  They described road feature characteristics as 

typically being represented by the following characteristics: 

1. roads are elongated; 
2. roads have a maximum curvature; 
3. the road surface is homogeneous; 
4. the road surface often has a good contrast with the adjacent areas; 
5. roads do not stop without reason; 
6. roads intersect and build a network; and 
7. higher roads may cast a shadow. 

(Vosselman and de Knecht, 1995) 

The Kalman filter was able to rule out pixels based on a set of predefined 

conventions and once it predicted the direction of the road, the human operator could then 

overrule algorithmic decisions based on the set of road characteristics.   

Semi-automatic extraction of road networks using dynamic programming has been 

researched extensively by Gruen et. al. (1994, 1995) and Gruen and Li (1995, 1997).  Their 

research defined a typical road extraction procedure as consisting of four steps including 

road sharpening, road finding, road tracking, and road linking.  Using these stages, Gruen 

and his associates were able to detect and extract roads from single SPOT scenes and digital 

aerial photographs.  Similarly to Vosselman and de Knecht (1995), they listed several generic 

properties of road features that were used for identification within the image.  These features 
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included the properties that a road pixel is lighter than its neighbours on both road sides, 

grey values along a road typically do not change within short distances, and a road is linear, 

smooth, and of generally consistent width.  Dynamic programming was defined as a 

technique for solving optimization problems (Gruen and Li, 1995) as it can simultaneously 

evaluate unrelated road characteristics such as those outlined above.  Optimization, in their 

context, was defined as a determination of the best multistage process for road extraction.  

By interactively inserting vertices into observable road segments in the image prior to 

processing, these seed points were then connected to form polygons.  Results show that 

dynamic programming was successful, particularly in rural areas where the distinction 

between roads and the surrounding agricultural land use was very clear. 

Use of Least Squares B-spline (LSB) Snakes is a further extension of the work done 

by Gruen and Li (1997).  LSB-Snakes represent an approximation of the position and shape 

of a linear feature within a RS image or scanned aerial photograph.  The methodology 

combined the tools of ordinary least-squares estimation with the determination of energy-

minimizing functions.  Using this approach, Gruen and Li (1997) were able to use only a few 

coarsely distributed seed points set by a human operator near the features of interest to 

extract features using least-squares regression.  In their tests, the process was able to extract 

roads under difficult conditions including varying road widths and obstruction by buildings, 

trees, and cars.  Based on their results, Gruen and Li (1997) concluded that the results clearly 

prove the success of this algorithm.   

A different method of extraction, which dates back to the late 1980’s, is the use of 

computational neural networks for the classification of remotely sensed imagery (Wilkinson, 

1996).  Since the potential of neural networks was first demonstrated in the context of 

feature extraction, there has been a quickly growing body of literature on this topic (see, for 

example, Benediktsson and Sveinsson 1997, Liu et al. 2000).  In recent years, the number of 

successful applications of neural networks for image classification has been increasing.  Liu et 

al. (2000) claimed that neural network classifications were more accurate than conventional 

approaches to remote sensing for several reasons: 
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1) neural network classifiers make no priori assumptions about data distributions 
(and they) are able to learn … patterns in the distribution classes; 

2) neural networks can readily accommodate collateral data such as textual 
information, slope, aspect, elevation; and 

3) neural networks are quite flexible and can be adapted to improve performance 
for particular problems. 

(Liu et al., 2000) 

Following from this, Liu et al. produced in MATLAB software several programs for 

the visualization and analysis of road network infrastructure.  Similarly, Bendiktsson and 

Sveinsson (1997), used computational neural networks as an alternative to conventional 

classifiers for the classification of remote sensing data.  Given the successes generated in the 

use of neural networks, it is likely that more research in this field will appear in the future.  

However, in terms of their commercial implementation, packages such as PCI’s 

EASI/PACE Imaging Kit are just now including back-propagation neural network 

algorithms.  Because of the expense of this package and the lack of knowledge on its use, a 

large gap currently exists, and will likely continue to exist, between research and software 

implementation (Liu et al., 2000). 

Alternatively, laser scanning is a relatively new (in this context) and independent 

technology, which has made a recent resurgence in the study of image feature extraction 

(Ackermann, 1999; Haala and Brenner, 1999; and Wehr and Lohr, 1999).  Currently, laser 

scanning is only captured on airborne platforms rather than earth-orbiting satellites.  

However, the techniques of data gathering to measure the visible ground surface or objects 

on it make it useful for linear feature extraction.  Ackermann (1999) pointed to laser 

scanning as a particularly interesting new application for the automatic capture of buildings 

and built-up urban areas within digital urban models.  To this end, Haala and Brenner (1999) 

used airborne laser scanning to classify urban scenes and complete a subsequent process of 

building reconstruction into a 3-D visualization.  Because the use of laser data proved to be 

successful for them in reconstructing urban environments, they suggested that airborne laser 

scanning was useful for the automatic generation of urban databases.   

Finally, road reconstruction using 3-D edge extraction has recently been developed 

by Gruen and other collaborating researchers (Zhang et al., 2000; and Zhang and Baltsavias, 

2000).  The continued goals of Gruen and his team of researchers is to build an automatic 

and robust system to reconstruct road networks from aerial images with the aid of existing 
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road databases and other data (Zhang and Baltsavias, 2000).  In this case, they developed a 

new approach for automatic 3-D road network extraction by integrating known techniques 

for processing imagery with existing spatial databases.  Their existing data for road networks 

included road type, class, width, length, topology information, and land cover.  These 

ground-based data were then integrated with the imagery for 3-D road extraction. Zhang and 

Baltsavias (2000) tested several combinations of this integration and were able to extract 

successfully a road from a suburban setting.  Zhang et al. (2000) found that the 3-D edge 

extraction method provided reliable results given the large amount of existing knowledge 

input into the process.  Based on a visual interpretation of the imagery provided in Zhang et 

al. (2000), it would appear that this process, like previous research into road network 

extraction, has had far greater success in rural areas as compared to the more diverse and 

complex urban scenes.   

The feature extraction tools reviewed above all have their strengths in terms of 

adequately extracting linear features for digital map creation and updating.  However, none 

are able to provide a fully automated method with reliable results.  Much more research is 

required in this area before this type of stand-alone method becomes routinely used for 

urban planning and land use management purposes.  This thesis does not seek to improve 

upon the technical process of skeletal linear feature extraction.  Rather, the integration of the 

extracted features with ancillary data for identification of areas of potential environmental 

stress is the objective.  Once roads are successfully identified and extracted from RS source 

data, the question of how these data can be combined with other data sources to locate areas 

of potential environmental stress is addressed.  While the road network can be viewed as the 

skeleton around which secondary urban development occurs, integration of this information 

with other indicators of change in a GIS (such as land cover classification and socio-

economic data) allows for the pattern and process of land use change to be monitored and 

better understood.  Thus, the roads are regarded as the integral indicator in terms of 

detecting and locating urban development and potential environmental stress in a temporal 

analysis process. 
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2.5.7 Geographical Information Systems (GIS) 

In 1997, the GIS industry was valued at over US $2 billion (Mark et al., 1997).  This 

figure says much about how the growth of the industry in North America over the past two 

decades, but little about the positive effects of GIS in developing countries, in particular 

their contribution to SUEM.  Sui (1998) examined current practices, problems, and 

prospects of GIS-based urban modeling.  He noted that conventional urban modeling is 

being used with GIS worldwide.  However, he questioned the relevance of such 

conventional strategies, which tend to be more closely associated with industrial societies 

than today’s information society.  Models specifically targeting industrial cities have a 

primary goal of controlling land use and this is not necessarily the goal in terms of modeling 

cities in the information age.  With the decline of the manufacturing base and the growth of 

multinational corporations, the global economy is becoming more diversified and a new 

urban reality is appearing where the basic manufacturing sector is disappearing thereby 

lessening the need for stringent land use controls.  Sui noted in particular that the integration 

of GIS with urban modeling is currently technology driven and there is not necessarily 

adequate justification for the validity of models, nor is there a suitable spatial-temporal 

framework embedded in the current generation of GIS.  In this context, new models of 

urban development, and specifically SUEM, must be developed to ensure proper urban 

growth in a sustainable manner.  This can be achieved if the new models take into account 

indicators of urban growth and specifically indicators of environmental stress, to ensure 

sustainable growth patterns.   

The recent research on GIS and urban structure and modeling outlined above leaves 

many gaps in terms of the provision of a model to ensure SUEM for cities as they grow and 

expand.  The cities in DC are likely to experience stronger repercussions from the lack of a 

model for SUEM considering their ongoing rapid urbanization (Li and Yeh, 2000).   The 

existing research points to the need for a new model of GIS analysis to facilitate urban 

growth simultaneously with the objectives and practice of SUEM in mind.  

2.5.8 Integration of Remote Sensing and GIS 

SIT technologies, especially RS and GIS, have much to benefit from each other 

(Foody, 1995).  In fact, some software vendors, such as ESRI and ERDAS, claim the ability 
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to provide seamless integration between products.  However, practice has shown that the 

coupling of RS and GIS data formats is still some way from seamless.  The integration is 

hampered by the use of differing data models and by the historical differences between these 

two data structures (Edwards, 1991).  Data models in this context include raster, which 

represents features in a cell or regular grid based model, and vector, which uses points, lines 

and polygons to represent features.     

Total SIT integration is defined by three classes of integration, namely ‘separate but 

equal’, ‘seamless’, and ‘total integration’ (Edwards, 1991).  Separate but equal integration 

allows for separate software interfaces for image analysis and GIS with data exchange 

between each of the two, while seamless integration combines raster and vector systems into 

a single interface.  Total integration involves a single system without the encumbrances of 

classes one and two noted above (Edwards, 1991).  Several researchers have recently 

analyzed the current state of successful integration, at various levels, between RS and GIS 

(Gahegan and Ehlers 2000, Wilkinson 1996, Edwards 1991, Stow et al. 1991).  Wilkinson 

(1996) proposed three main ways in which RS and GIS technologies are complementary to 

each other: 

1) remote sensing can be used as a tool to gather datasets for use in GIS, 
2) GIS datasets can be used as ancillary information to improve products derived 

from remote sensing, and 
3) remote sensing data and GIS data can be used together in environmental 

modeling analysis. 
 

The use of RS as a tool to gather datasets for analysis in a GIS is not new.  However, 

improvements in image classification are making their integration with ground-based data 

more successful than ever before (Hall et al. 2001).  New classification algorithms and 

innovations such as artificial neural networks are improving classification methods and 

results and trends in gathering and integrating analysis of RS and GIS data suggest a 

convergence of the technologies.   Wilkinson (1996) suggested attribute analysis and 

classification of RS and GIS data, the use of very high dimensionality data from RS and GIS, 

and remote environmental mapping and object analysis / search in integrated RS and GIS 

datasets were commonplace analyses reported in the literature.  However, within the field of 

remote sensing for mapping purposes, the fusion of multi-sensor, temporal data, while 

practiced for years, is still a complicated process.  Environmental mapping requires the 
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temporal component to be complete and relevant in terms of SUEM, whether for a 

geographically remote location or at the rural-urban fringe of a large developing city.  

Despite the advances, the processes involved in data fusion are still currently under 

development as much as at any point in the past decade.  This situation is somewhat 

complicated by the constant introduction of new and different satellite remote sensors.  

Moreover, many types of different formats and structures continue to hamper this 

integration.   

The updating of GIS data layers based on digital remote sensing has been extensively 

examined (Makarovic, 1995; Martinez-Casasnovas, 2000; Molenaar and Janssen, 1991).  Stow 

et al. (1991) introduced a process that a regional planning agency can use to correct and 

update vector data using remotely sensed data.  Using what they dubbed a “live link” 

between ERDAS image processing software and Arc/Info GIS software, remotely sensed 

data were successfully adopted to correct and update GIS land use layers.  In the years since 

their research, software vendors have gone to great lengths to facilitate integration without 

the need for a “live link” between two separate interfaces.  For example, many GIS currently 

support both raster and vector data structures and several image analysis packages promise a 

single interface capable of various merged functionalities, architectures, data structures, and 

ultimately, user experience.   

In the context of this thesis, the integration of RS and GIS technologies is facilitated 

as follows.  On the left hand side of Figure 2-3, RS imagery is proposed as a means to collect 

temporal land use change information.  The results of this change detection form a dataset 

that can then be fed into a GIS for further integrated analysis.  The temporal GIS-based 

socio-economic data analyses, shown on the right-hand side of Figure 2-3, are proposed as a 

source of ancillary information to improve the output of the RS change detection results.  

Together, the RS and GIS analyses in Figure 2-3 are used to derive the location of areas of 

potential environmental stress for further analysis and subsequent policy and planning.  This 

type of environmental modeling demonstrates precisely Wilkinson’s (1996) three ways that 

RS and GIS technologies are complementary. 

Even with all of the improvements in the integration of RS and GIS data sets, some 

uncertainty still exists.  Gahegan and Ehlers (2000), for example, suggested that 
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transformation processes, which are integral in RS - GIS integration, contribute to the 

overall uncertainty that develops within the data.  They expanded on this by noting that 

because data are abstracted from their ‘raw’ form to the higher representations used by GIS, 

they must be passed through a number of different data models using a series of 

transformations.   

Current approaches to RS and GIS integration typically involve several stages of 

transformation including image classification, object formation, and data structure 

conversion.  Image classification represents the replacement of the ‘raw’ image data with 

thematic interpretations to assist in the understanding of trend structures or content of the 

imagery.  This process typically occurs on a per-pixel basis, however some pixels may be left 

unassigned or grouped into an ‘unknown’ class.  Object formation is the conversion of a 

thematic model into an independent entity with a defined shape.  Errors can occur in the 

object formation transformation process due to positional uncertainty and error.  Finally, in 

terms of data structure, GIS data formats are typically software-specific (Huxhold and 

Levinsohn, 1995).  Hence, to use data created or modified with one proprietary GIS always 

requires a data structure transformation for analysis with a different GIS.  All of these 

transformations, alone or combined, can lead to uncertainty in the data.   

It is possible that data characteristics may change during the transformation and it is 

difficult to determine to what extent the transformation method used may have affected the 

data (Gahegan and Ehlers, 2000).  The types of uncertainty generated in the four models of 

geographic space, field, image, thematic, and object are shown in Table 2-1.  These sources 

of uncertainty affect the completeness and consistency of data making them difficult to 

manage and account for during decision making.  Given this, the current methodologies for 

RS and GIS integration are by no means perfect and the validity of results generated from 

processes, such as those shown in Figure 2-3, must be carefully scrutinized. 

Several studies have been undertaken to examine the integration of RS and GIS 

(Molenaar and Janssen, 1991; Amissah-Arthur et al., 2000; Yeh and Li, 2001; Huan, 1995; 

and Weimin, 1995).  Subject to the caveats noted above, this integration has proven to be an 

effective and potentially powerful means of land use analysis and classification that can assist 

in the development of planning guidelines and policies.  Techniques have included vector on  
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Type\Heading Field Image Thematic Object 

Data or 
Value 

Measurement 
error and 
precision 

Quantisation of 
value in terms 
of spectral 
bands and 
dynamic range 

Labeling 
uncertainly 
(classification 
error) 

Identify error 
(incorrect 
assignment of 
object type), 
object 
definition 
uncertainty 

Space Locational error 
and precision 

Registration 
error, sampling 
precision 

Combination 
effects when 
data 
represented by 
different spatial 
properties 
combined 

Object shape 
error, 
topological 
inconsistency, 
‘split and merge’ 
errors 

Time Temporal error 
and precision 

(Temporal 
error and 
precision are 
usually 
negligible for 
image data) 

Combination 
effects when 
data 
representing 
different times 
are combined 

Combination 
effects when 
data 
representing 
different times 
are combined 

Consistency Samples/readings 
collected or 
measure in an 
identical manner 

Image is 
captured 
identically for 
each pixel, but 
medium 
between 
satellite and 
ground is not 
consistent; 
inconsistent 
sensing, light 
falloff; shadows 

Classifer 
strategies are 
usually 
consistent in 
their treatment 
of a data set 

Methods for 
object 
formation may 
be consistent, 
but often are 
not.  Depends 
on extraction 
strategy  

Completeness Sampling strategy 
covers space, 
time, and 
attribute domains 
adequately 

Image is 
complete, but 
parts of ground 
may be 
obscured 

Completeness 
depends on the 
classification 
strategy.  (Is all 
the data set 
classified or are 
only some 
classes 
extracted?) 

Depends on the 
extraction 
strategy.  Spatial 
and topological 
inconsistencies 
may arise as a 
result of object 
formation.  

(Gahegan and Ehlers, 2000) 

Table 2-1:  Types of Uncertainty in Models of Geographic Space 
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raster superimposition, vector to raster conversion and vice versa as well as database level 

integration to reduce uncertainty in RS classification.  Molenaar and Janssen (1991) 

suggested that to make the most out of the good monitoring of object dynamics, RS data 

should be linked directly to object information stored in a GIS.  Objects, or entities, can 

then be more accurately identified and similarly, object information in the GIS database can 

be used to identify changes in the RS data.  However, some uncertainty exists in this type of 

integration in part due to the fact that information derived from RS data can never be 

considered fully accurate since classifications are often done without full information.  

Therefore, classification results need to be analyzed in terms of variances and probabilities 

and can never be considered one hundred percent accurate (Molenaar and Janssen, 1991). 

Two studies review the use of RS and GIS for urban growth monitoring in the 

rapidly growing city of Bangkok, Thailand (Weimin 1995, Huan 1995).  Weimin’s (1995) 

research focused on the use of synthetic aperture radar (SAR) and visible infrared radiometer 

(VIR) satellite imagery in combination with ancillary GIS data for post-classification sorting 

and accuracy assessment of land use change on the northern fringe of the city.  Detected 

change was mostly caused by rapid industrialization and urbanization.  The ancillary data 

used included soil and topographic maps, crop calendars, agricultural statistics reports and 

meteorological data.  From the analysis of these data, Weimin was able to conclude that the 

integration of RS and GIS allowed analysis of land use change and its resulting effects on the 

infrastructure of unused lands.  However, he noted that more GIS-based socio-economic 

data would be necessary to assess the environmental impacts of such rapid development in a 

city such as Bangkok.  

Similar to Weimin, Huan’s (1995) study also focused on the application of RS and 

GIS to evaluate urban development in the northern corridor of Bangkok.  Huan (1995) 

concluded that RS and GIS databases should be institutionalized within the planning process 

in order to improve the location of urban infrastructure and to ensure proper planning and 

development of the northern corridor of Bangkok in the future.  This conclusion serves to 

confirm further the applicability of the combined operational use of RS and GIS (Figure 2-3) 

to assist in facilitating improved planning practice and SUEM. 
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Relative to the above research, the rural-urban fringe of cities is a particularly 

important area in terms of land cover / land use analysis.  Because of the rapid urban 

development and dramatic land use changes that occur at this location, the measurement and 

monitoring of change is crucial to the achievement of SUEM.  In most cases, newly 

developed urban sprawl is on isolated tracts of land, separated from other areas of 

development by segments of vacant land use.  Because RS is able to detect and measure 

many elements relating to the morphology of cities, including the amount, shape, density, 

textural form and spread of urban areas, its use is well suited to detecting and monitoring 

such isolated tracts.  Given this, RS can be successfully used along the rural-urban fringe to 

locate and analyze the spread and extent of sprawl based on shapes and patterns of 

development.     

It is evident from the above research that there currently exists a broad range of 

studies that integrate RS and GIS technologies to study aspects of urban land use.  However, 

the lack of a seamless process of integration between the two technologies is also evident, 

especially in terms of facilitating development of a model of SUEM that can be used to 

achieve improved planning.   Several recent studies have assessed the ability of integrating 

remotely sensed and socioeconomic data within a GIS to analyze landscapes and land use 

dynamics (Hall et al., 2001; Thomson and Hardin, 2000; Yeh and Li, 2001; Amissah-Arthur et 

al., 2000).  With information derived from both RS and ground-based GIS data, a multi-

source GIS database can be used to acquire timely and accurate source data for planning 

applications.   

Currently, development and use of this form of GIS database creation has not been 

fully studied, which is surprising given the need for this type of resource in developing 

countries.  In the context of urban analyses, and especially, the specific context within which 

this thesis operates, the process of combining data sources and facilitating temporal analyses 

within a multi-purpose / multi-source GIS is integral to the practice of SD, UEM, and 

subsequently, SUEM. 

2.5.9 Conclusions on SIT Implementation in DC for SUEM 

In light of the difficulties of IT and SIT penetrating and being successfully 

implemented in developing countries, some conclusions can be drawn regarding what must 
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be done.  Stanley et al. (1997) make several observations on the problem of IT use based on 

experiences with United Nation’s (UN) projects in developing countries.  First, they note 

that in too many cases, projects focus too much on simply making the project operational 

rather than developing applications to facilitate decision-making.  This has resulted in the 

fact that very few projects have produced results that directly affect planning in the 

respective country.  Contrary to their point, it must be noted that before the development of 

decision-making applications can be successful, they must first have a well-designed 

operational plan.  If the process is not adequate or is incomplete, it is unlikely that any 

application will meet the needs of users.   

Overall, the implementation of SIT in developing countries faces many barriers to 

success.  Through this thesis, however, it is shown that the use of integrated SIT can result 

in improved information availability and processing, which, in turn, can help to facilitate 

better planning in the context of SD, UEM and SUEM.  To this end, the combined elements 

discussed earlier in this chapter (Figures 2-1 to 2-3) provide the concepts through which 

urban fringe stress detection can be achieved.  From this conceptual framework must come 

an operational model that effectively implements SIT. 

2.6 Operational Model for SIT 

To help facilitate SUEM under conditions of rapid urban growth, an operational 

process model has been developed to analyse urban development at the rural-urban fringe 

(Figure 2-4).  The stages of development noted in the model are adapted from the United 

States Geological Survey (USGS) Land Use/Land Cover classification system designed for 

use with remote sensing data.  The model is designed first to align the processes of road 

feature identification and extraction with the concepts of SUEM and subsequently with the 

other features and indictors under discussion.  Hence, the model is an amplification of the 

later stages of Figure 2-3.  Specifically, the model helps to facilitate the designation of land 

use and land use changes in the urban periphery of a growing city by analyzing emergent 

land conversion on a temporal scale.  Priority is given to the road network, as subsequent 

development is expected to occur around this.   
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Figure 2-4:  Operationalizing Figure 2-3 for Urban Fringe Land Use Classification 

The model outlines the progression from agricultural land use to intense urban use 

and the varying stages of progression in-between.   To identify what stage of change or 

existing state the rural-urban fringe is in, the model uses specific indicators of development.  

These indicators, beginning with roads, are all derivable from either RS or ground-based GIS 

data, or in some cases, from both.  However, not only do the indicators seek to point to land 

use change, they are also designated for their potential to allow planners to identify, over 

time, areas of impending land use stress at the fringe.  The specific RS and GIS methods of 

analysis applied to these indicators are discussed in Chapter 3. 
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As noted above, Figure 2-4 combines characteristics from both RS imagery and 

ground-based GIS data to detect sites of potential environmental stress by detecting and 

locating areas of rapid urban development.  The indicators on the left hand side (inside the 

gold dotted box) include land cover / land use, transportation and building infrastructure, 

population and population density, acreages of land use, number of livestock, numbers of 

registered vehicles and number of dwellings.  Collectively, these represent ‘triggers’ of 

potential environmental stress that are identifiable depending on the spatial resolution of 

satellite imagery and the quality and quantity of ground-based information available.       

Within the operational use of SIT for urban fringe land use classification, the 

indictors derived from RS and GIS data sources (shown on the left hand side of Figure 2-4) 

can be categorized into five relatively specific and three broader land use classifications.  The 

first two specific classes, reading from the top of Figure 2-4, are agricultural land and idle 

land.  These two are combined into the broader Stage 1 category.  The stage is generally 

representative of either purely agricultural or idle land or unkempt, sparsely settled land use.   

The middle class, which equates to Stage 2 in the broader classes, is representative of 

mixed urban or built-up land uses that incorporates some aspects of Stage 1.  Other 

characteristics of this stage include road network development and new construction of 

buildings and other urban infrastructure.  The final two specific classes include the building 

stage and the densification of people and buildings.  These two classes are included in the 

broader Stage 3, the urban or built-up land use stage.  The characteristics of this final stage 

include continued and expanded building of commercial and residential buildings, a firmly 

established transportation network and the further densification of buildings and people 

consistently rising.   

Moving from Stage 1 through to Stage 3, on the right hand side of Figure 2-4, rural-

urban fringe change is occurring.  The indicators are used to point to areas of potential 

environmental stress that may be appearing as land use changes from Stage 1 to Stage 2 and 

from Stage 2 to Stage 3.  These indicators, as well as their representative stages, are 

addressed in detail below. 
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2.6.1 Indicators Derived from RS 

From space, it is possible to see and study the earth as a complete organism, whose 

health depends on the health of all its elements (WCED, 1987).  The main indicators of 

potential environmental stress that can be extracted from remotely sensed imagery, as 

included in the operational portion on the left hand side of Figure 2-4, include land use / 

land cover, transportation networks and building infrastructure. 

These three indicators are selected for use in determining the location of urban 

growth over time and, subsequently, their potential use in detecting environmental stresses.  

Based on these indictors, it is possible to classify land use at the urban fringe in terms of the 

stages of development shown in Figure 2-4.  The areas that pass rapidly from stage one to 

two or three can then be targeted for improved planning practice and SUEM policy 

development.  Also, based on the integrated framework outlined in this chapter, these 

indicators play a key role in the RS change detection process used to localize areas of 

potential environmental stress.   

In general, the loss of prime agricultural land in the course of urbanization greatly 

impacts the likelihood and possibilities of SD in a region (Yeh and Li, 2001).  In terms of 

SUEM, a decrease in the amount of land at the urban periphery under agricultural 

production is likely to point to urban growth, or alternatively land that has moved from 

agricultural production to idle, speculative land uses in anticipation of growth in the future 

demand for the land.  This process is clearly demonstrated from left to right and top to 

bottom in Figure 2-4.  If it can be determined that a rapid shift from rural to urban land use 

is occurring in a particular area, then this location can be further monitored to evaluate its 

sustainability.   

If a rapid shift such as this goes unidentified, the probability of environmentally 

sound development occurring is unlikely.  The conversion of agricultural land into urban 

land uses has become, and will continue to be, a serious issue for sustainable growth in 

developing countries (Li and Yeh, 2000).  Specifically, inefficient or isolated urban sprawl 

makes ineffective use of land and energy resources, by leaving large transportation and 

communication gaps between areas of development, and forces large-scale intrusion onto 

surrounding agricultural lands.  In particular, fragmented conversion of agricultural land to 
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urban uses can be harmful to biological conservation by inhibiting diversity of natural 

biological and wildlife habitats (Yeh and Li, 2001).  At the rural-urban fringe in Stage 1 of 

Figure 2-4, much of the land use is likely to be range or idle land, as intense agricultural use 

has been abandoned due to land speculation.  Indicators such as large tracts of continuous 

homogenous land cover and relatively large acreages still under agricultural land use are used 

to determine whether or not land at the urban fringe belongs in Stage 1.  As the land use at 

the fringe changes from agricultural and idle uses into urban land uses, such as road 

development and initial building stages, a shift from Stage 1 to Stage 2 is generated (Figure 

2-4).  In general, the more rapid the shift is from Stage 1 to Stage 2, the more likely the 

potential for environmental stress to occur as there has not likely been sufficient time for 

proper SUEM polices to have been implemented by planners.    

As noted earlier, transportation infrastructure is regarded as the most important 

trigger of change that is detectable and extractable from RS in term of SUEM.  Hence, this 

aspect of the urban landscape needs to be monitored for planning purposes, updating 

cartography, and as landmarks for automated navigation (Karimi et al., 1999).  New paths or 

roadways appearing at the rural-urban fringe of a city can potentially be considered the first 

sign of human settlement in these sectors.  This can be regarded as a move from Stage 1 to 

Stage 2 in the operational classification of urban fringe land use change (Figure 2-4).  By 

facilitating early identification of this movement and subsequent settlement, an early 

evaluation of urban transportation can be completed for this sector.  With this information, 

prevention of environmental deterioration can be facilitated through improved and more 

targeted planning policy related to development at the fringe.  Furthermore, as road 

networks become denser over time, the conversion of adjacent land uses can be identified 

and analysed with satellite imagery in a timely and efficient manner. 

Extracting building infrastructure from satellite imagery is dependent on image 

resolution.  However, what can be extracted is useful in terms of indicating where 

development is occurring and, in particular, identifying the density of this development.  

Most urban objects, including buildings, are complex with respect to both their spectral and 

spatial characteristics, making them somewhat difficult to detect and classify (Zhang, 1999).  

Since buildings are one of the most important classes in urban land use, their identification 

and classification is important in terms of SUEM.  As the densification of buildings occurs, 
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in terms of urban fringe land use classification, a movement from Stage 2 to Stage 3 is likely 

occurring (Figure 2-4).  Through the determination of building location and density, the 

enhanced conservation and protection of urban natural and cultural environments can occur 

and the provision of required urban infrastructure can be achieved.  Depending on the rate 

of densification of buildings, there exists an increasing potential for environmental stress as 

buildings are erected relatively quickly and without adherence to proper zoning by-laws and 

construction quality guidelines.   

2.6.2 Ground-based GIS Indicators 

The ground-based GIS indicators used in this thesis, shown to the right in Figure 2-

4, are all derivable from census-based socio-economic data typically collected by local and 

national governments.  As such, these data are available to planners in developing countries.  

However, without a properly designed and implemented framework to analyse the data, their 

potential is unexploited.  The main indicators in this research that can help to identify 

locations of potential environmental stress, and that are derived from ground-based GIS 

data, include: 

1) acreage of land use / land cover under rural vs. urban use; 
2) numbers of livestock in selected regions; 
3) population, population density and internal migration levels; 
4) numbers of dwellings; and 
5) numbers of registered vehicles per province. 
 

These indicators are not used independent of one another.  Their individual and 

combined impacts point to potential environmental stresses that may be occurring at the 

rural urban fringe as urban growth occurs.  Furthermore, these ground-based GIS indicators 

are analysed via an integrated process with indicators derived from RS imagery.  The 

integration of indicators derived from RS imagery and ground-based census data within a 

GIS provide further spatial analysis capabilities beyond what either can reveal alone.  Each 

of these ground-based indicators is now discussed in greater detail. 

First, acreage of land use by land use class provides the same type of information as 

the satellite imagery analysis and can be used as collaborative data to validate the imagery, 

assuming a similar time frame.  Similar to the RS derived land use indicators discussed in the 

previous section, in terms of the operational classification of urban fringe land use, the 
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greater the acreage of land still under agricultural use, the more likely that this land would fall 

into Stage 1 (Figure 2-4).  As this value decreases, the classification moves from Stage 1 to 

Stage 2 and perhaps as far as Stage 3, depending on the amount of land use change.  As 

noted earlier, it is the rate of change that determines the relative potential for environmental 

stress evidenced by the amount of change in the indicator under examination. 

Second, related to rural land use, is the numbers of livestock in a particular region.  A 

rapid reduction in the numbers of livestock in a region over time can imply a possible 

change in land use from rural to other uses.  If change such as this is occurring too rapidly, 

for example, a movement from Stage 1 to Stage 3 of Figure 2-4, it is unlikely that enough 

time was given to plan this change properly.  This situation will likely not lead to SUEM 

without substantial increases in government spending on improving planning practises.  This 

type of scattered development, often referred to as “leapfrog development” because of the 

dispersed and random growth, has been criticized for its inefficient use of land resources and 

energy (Yeh and Li, 2001).   

Population, population density, numbers of dwellings and migration levels are all 

indicators of growth and sprawl.  The difficulty with these indicators is that ground-based 

population measurements and estimates are not always very accurate (Cowen and Jensen, 

1998).  Census taking in developing countries is, in most cases, sporadic at best, and not 

even as frequent as the typical ten year census carried out in most developed nations.  Even 

when a census has been completed, the results often take a long time to process and publish, 

and the quality and validity of the data are questionable.  However, with these constraints 

noted, the data that are collected and reported can be used to assist in the management of 

the urban living and working environment.  With this information, SUEM can be better 

facilitated because without such data, there is little indication of where growth may occur 

and how quickly the landscape is likely to change from rural to urban uses.   

Further, density and numbers of dwellings can also be used as indicators of quality of 

living.  Population density is an important parameter in determining the location of rapid 

urban growth as it can be inferred that areas at the fringe with higher population densities 

are more likely to be potential low-income locations.  While this may not always be the case, 

higher densities are more likely to be characteristic of lower income neighborhoods with less 
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individual space per unit area (Hall et al, 2001).  In particular, this is more likely to be the case 

if the growth is occurring without proper planning input, such as within a squatter 

settlement.  This type of rapid settlement and population growth in a localized area is likely 

to be representative of a movement from Stage 1 to Stage 2, or perhaps even Stage 3 of 

Figure 2-4.  The operational use of indicators derived from GIS-based data analysis to 

classify urban fringe land use can, in this context, be successful in terms of identifying the 

location of this land use change by accurately identifying potential stress areas. 

Finally, the number of vehicles registered is a surrogate measure for transportation 

infrastructure.  In Bangkok in 1980 there were less than half a million private vehicles (cars 

and motorcycles registered); by 1990 there were 1.3 million registered private vehicles 

(Punpuing and Ross, 2001).  For SUEM to occur, urban transportation must be observable 

and quantified in terms of growth and density of road network patterns.  Just as the 

extraction of roads from satellite imagery can be used as the skeleton around which 

development occurs, the number of vehicles registered can be used as supplementary data to 

help confirm the findings from the satellite images.  In Stage 1 of Figure 2-4, minimal road 

development is evidenced.  However, as land use evolves into Stage 2, a detectable 

characteristic is the development of the road network.  This is further exemplified in the 

move to Stage 3, where road development may be complete, and intensification is occurring 

rapidly adjacent to these roads.  The ability to identify roads in contrast to other forms of 

urban growth is uniquely important in terms of urban fringe classification and in the context 

of this thesis.  Specifically, roads must be identifiable as they form the main trigger of 

development that can be used to force a movement from a Stage 1 land use classification to 

either a Stage 2 or Stage 3.  Once roads begin to appear and the land use classification 

evolves from Stage 1 to Stage 2 and beyond, the relative rate of this evolution can be used to 

determine the potential development of environmental stress occurrence. 

The indicators outlined above that are derived from RS imagery and GIS-based 

ground data analysis can be methodically combined to classify land use at the urban fringe.  

The operational use of SIT based on these indicators (Figure 2-4) is integral to the staging of 

development occurring at the urban fringe in terms of accurately identifying areas of rapid 

land use change and subsequent potential environmental stress.  This classification and 
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identification process is fundamental to the goals of SUEM in terms of their successful 

application to planning guidelines and policy creation in cities in developing countries. 

2.7 Summary 

This chapter has summarized the current situation in developing countries in terms 

of the application of the concepts of SD and UEM.  Combined, these define the concept of 

SUEM, which is the desire for sustainable urban growth and management in conjunction 

with social and economic development.  SUEM was then placed in the context of using SIT 

to achieve SUEM in developing countries.  Specifically, the discussion focused on the 

concept of urban environmental stress and the use of SIT to detect and analyze potential 

stress triggers.  Throughout the discussion it was noted that without access to spatial 

information, it is difficult to develop and implement growth management strategies, 

especially at the fringes of rapidly expanding large and middle-sized urban areas.  To this 

end, an integrated framework model was presented that linked the concepts of SD, UEM 

and SUEM with the use of SIT to facilitate potential stress detection analysis.   

The current state of research on the integration of RS and GIS for the detection of 

environmental stresses was also reviewed.   In particular, the discussion focussed on the 

detection and extraction of features that are possible indicators of environmental stress from 

satellite imagery, their union with ground-based indicators, and their subsequent integration 

to facilitate SUEM.  To achieve this detection, a model was presented to operationalize the 

integrated framework model in order to facilitate urban fringe land use classification.  In the 

context of this thesis, the city of Bangkok, Thailand, is the case study for the operational 

implementation of the integrated framework outlined in this chapter.  As such, Bangkok’s 

past and current planning practices are discussed further in the following chapter along with 

a detailed review of the research design implemented in this thesis. 
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CHAPTER 3 

 

RESEARCH DESIGN 

 

This chapter discusses the methods and operational design of the research 

undertaken in this thesis.  To set the stage for the study area discussion, the past and current 

economic and planning frameworks of cites in Southeast Asia, and specifically those of 

Bangkok, Thailand, are discussed.  Next, the process of selecting the study area, field 

research experiences, the specific research methodologies used, data collection, data 

processing and analysis methods are all discussed in sequence.  Each aspect of the research 

design relates directly to the components of the integrated framework presented and 

discussed in Chapter 2.  

3.1 Study Area 

I wonder where Bangkok is.  Shouldn’t it be here by now?  Shouldn’t the city lumber 
out of the rice fields soon?  Bangkok always comes to you slowly, languidly, but its 
sprawling outskirts gradually transform into a taloned, grinning creature with an 
appetite for money and human time.  … The pace of the city always surprises me.  
Slums trip into office buildings, apologizing with flimsy fences; markets wander into 
streets, shopping centers into dirty sky.  Concrete edges elbow ancient temples, 
nudge palaces for room to grow, expand, swallow up the old to spit out the new. … 

(Connelly, 1992) 

Connelly’s first impressions of Bangkok, Thailand from her trip there in 1986 are still 

fundamentally accurate fifteen years later.  The city ‘lumbers’ out of the rice fields with its 

sprawling outskirts more aggressively than ever before as it envelopes surrounding unpaved 

ground.  The city’s ability to capture an entire spectrum of human living environments in a 

single residential block is part of the reason Bangkok was selected as the study area for this 

thesis.  With a population of over 60 million, Thailand has experienced an average annual 

population growth rate of 1.05 percent over the last ten years (National Statistics Office, 

2000).  In addition to this, it had the distinction of being the world’s fastest growing 



 53

economy between 1984 and 1994 (Johnson, 2000).  Bangkok has grown to well over 9 

million inhabitants and has experienced only a slightly lower rate of growth than the entire 

country in the same time period (0.72%) (National Statistics Office, 2000).   

The population growth rate has two primary spatial manifestations, one internal and 

the other at the urban periphery.  The former has the effect of increasing already high 

population densities in specific inner city areas.  Poor housing and indigent rural migrants, 

many of whom find work in the informal sector, typically characterize these areas.  The latter 

dimension of growth has had the effect of pushing development out into hinterland areas of 

productive agriculture or idle land use.  This growth has implications for loss of agricultural 

productivity and extending urban services further from traditional service hubs; often to the 

point where new, dispersed service hubs have evolved.  The current economic boom after 

the Southeast Asian economic crisis of the late 1990’s resulted in additional uncontrolled 

urban growth.  Because of this rapid and continued growth, the need to provide proper 

urban infrastructure has occurred at the same rate.    However, the provision of this 

infrastructure, which is necessary to sustain a reasonable quality of life, has not been 

provided at a rate equal to its demand.   This problem has had a tendency to lead to 

environmental damage, as people have turned to alternative means of compensation for the 

lack of infrastructure, which in turn further lowers the quality of life for persons living in the 

fringe regions. 

Despite the need for improved infrastructure and better growth management, 

inadequacies in local planning processes have put unprecedented pressure on surrounding 

urban fringe locations, endangering not only long term environmental sustainability but also 

the quality of life of residents in these areas.  In this context, Bangkok is fundamentally 

similar to many other cities in Southeast Asia.  Prior to discussing planning within the 

Bangkok Metropolitan Area, recent urban growth and economic trends in the region are 

reviewed. 

3.1.1 Recent Growth & Economic Trends in of Southeast Asian Cities 

The population boom following World War II foreshadowed a serious concern in 

cities in Asia and Southeast (SE) Asia regarding urban expansion and its potentially negative 

impact on development (Laquian, 2000).  To help combat the high rate of natural increase, 
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in the 1970’s countries such as Thailand initiated the provision of family planning services 

(Tirasawat, 1985).  At this time, as rural-urban rates of migration were on the rise, the 

dominant view in many countries in SE Asia was that in the absence of improvements in 

living conditions and poverty alleviation for rural residents, there would be continued rural 

out-migration to urban areas where families would join the growing ranks of the urban poor 

(Laquian, 2000).   Working with this same belief, the government of The Philippines, 

instituted a twin development policy based on Rice and Roads.  Laquian (2000) notes that 

once the government had instituted this policy of improving rice production and building 

better roads to market to sell the harvest, rather than curbing rural-urban migration, more 

farmers took their sudden rice profits and travelled the now good roads to become squatters 

in the cities.  Policies of this type were used often in attempts to curb rates of rural-urban 

migration, however they have met with little success and rural-urban migration continues 

unabated. 

Recent patterns of internal migration in SE Asia have been triggered primarily by 

income related factors (Ogawa, 1985).  Shifts in population distribution in these countries 

continues to cause many unwanted side effects, including high rates of unemployment, 

housing shortages, and the propagation of squatter settlements.  Present directions of 

urbanization and internal migration do not bode well for improvement of these problems.  

Ogawa (1985) pointed out six sources of uncertainty surrounding migration and urban 

growth in 1985 including: 

1) the international economic environment is likely to be considerably different 
from what has been experienced before; 

2) the scope of regional development plans for ASEAN countries are unknown 
3) patterns of urban development are clearly distinct from urban growth patterns in 

industrialized countries; 
4) the disappearance of the agricultural frontier, which will effect the pattern of 

population movements; 
5) the potential development of improved communication and transportation 

networks; and 
6) the unknown demographic mechanism of urban growth. 

(Ogawa, 1985) 

Fifteen years later, these uncertainties still plague virtually all cities in SE Asia.  

Hence, the tasks of facilitating proper urban planning practices and, in particular, achieving 

SUEM are very difficult.   
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Growth in Asian economies was favourable from the mid-1980s through to the mid-

1990s.  Foreign investment and strong export-based economies led to predictions of 

unlimited economic growth and development potential for the region.  However, the 

financial crisis of 1997 raised fundamental questions about the future state of SE Asian 

countries (Zha, 2000).  This crisis prompted a re-evaluation of Asia’s future, both financially 

and politically, and has subsequently raised new questions about globalization in SE Asia in 

terms of ideological/political clashes between those who desire greater Western 

liberalism/capitalism versus those who prefer to continue the ‘Asian Way’ of life in the 

future (Zha, 2000).  The economic crises left many countries and cities in SE Asia with much 

to consider in terms of growth and prosperity.  Bangkok, located on the central plain in 

Thailand, was certainly no exception. 

The City of Bangkok, and its surrounding changwats (provinces) (Figure 3-1) represent 

the most rapidly urbanizing region in Thailand  (Greenburg, 1994).   Collectively, they 

(Bangkok Metropolis, Samut Prakarn, Pathum Thani, Nakhon Pathom, Samut Sakhon and 

Nonthaburi) combine to form the Bangkok Metropolitan Region (BMR).  Many problems 

have long been identified in terms of urban growth and development within the BMR, 

including: 

1. a haphazard, poorly coordinated pattern of development, 
2. imbalances and conflicts in land utilization, 
3. a poorly developed communications network, 
4. a mal-distribution of living and working places, 
5. large tracts of idle and under-utilized lands, and 
6. an absence of basic necessities for the urban poor. 

(Edwards, 1983) 

Collectively, this list represents not only many inconveniences for people living and 

working in the BMR, but the problems also serve as warning signs of potential 

environmental stress due to inadequate urban planning and improper development patterns.   
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Figure 3-1:  Location of Bangkok City Centre and Bangkok Metropolitan Region (BMR) 
Changwats within Thailand 

3.1.2 Urban Planning in the Bangkok Metropolitan Region (BMR)  

Suburban development, at the expense of lost rice fields and gardens converted into 

middle class and wealthy bungalow settlements, figured prominently in Bangkok’s post-war 

development (McGee, 1994).  From 1947 to 1956, the built-up area in and around the city 

expanded from about 67 square kilometers to 90 square kilometers and by 1980 it had 

reached over 239 square kilometers (Askew, 1994).  The majority of rural-urban migration 

flow in Thailand consists of Bangkok-bound movers (Ogawa, 1985).  Because of this in-
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migration, settlement in Bangkok now extends over 40 km from its historic core, with no 

discernable structure or organized pattern.  The leapfrog development, which comprises 

pockets of unconnected development, has led to a fragmented metropolitan area and a 

progressive loss of some of the best agricultural lands at the edge of the expanding 

metropolitan area (Hack et al., 1994).  However, even though this is a well-known and well-

documented phenomenon, little has been done successfully in terms of planning and policy 

development in Bangkok to halt this pattern of development.  This can, in part, be attributed 

to the lack of experience in planning and implementing large-scale development processes in 

Thailand (Hack et al., 1994).  Additional factors pertaining to past planning initiatives, 

including politics and government corruption, and the urban morphology and structure of a 

city like Bangkok must also be taken into consideration. 

Foreign and local urban planners have long been attempting to bring some form of 

management to the sprawling urban development (Greenburg, 1994).  However, this has 

been only met with limited success.  Almost 20 years ago, Edwards (1983) noted that there 

had been growing and widespread agreement for over a decade that measures to control the 

growth of Bangkok were urgently needed.  At that time, it was already recognized that the 

capacity of the land to absorb the needs of the expanding city was diminishing and the 

growth of Bangkok, unlike the rest of the country, was occurring at a dramatic rate relative 

to the rate of total growth.    

The processes of transformation on the urban fringe areas of Bangkok have brought 

changes in settlement patterns, land uses and social relations.  To study these processes, it is 

necessary to gain a greater understanding of the underlying socio-spatial and ecological 

changes.  Askew (1996) notes that the key to this understanding lies in placing the emphasis 

of study on the re-shaping of urban fringe regions at two separate, but equally important 

levels, namely the societal/state/economic level and the local level.  Integrated within the 

former is the process of structural change, including transportation systems.  In this thesis, 

the examination of structural change is regarded as a key element in the determination of 

land use change and the detection of potential environmental stress.   By identifying 

transportation system change and expansion as one of the primary catalysts of other changes 

at the urban fringe, Askew (1994) lends support to the thesis and the importance that the 

transportation network plays in urban fringe development. 
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The development plans for the BMR over the last two decades have been based on 

the Bangkok Metropolitan Area Plan, which is summarized by Edwards (1983).  The 

concepts described are based on several official documents from various government 

departments and may be listed as: 

1) The containment and ordering of development particularly within the area of 
Bangkok’s outer suburbs. 

2) The division of development to, and the accelerated growth of, a selected 
number of satellite towns and communities. 

3) The establishment of a system of major transport corridors in the context of an 
effective, developed transportation hierarchy. 

4) The retention and consolidation of an economically viable, convenient and 
socially vital Central Area. 

5) The concentration of commercial development (other than in the central area) 
into a number of selected suburban sub-centers and satellite towns. 

6) The consolidation of existing industrial locations. 
7) The establishment of a comprehensive metropolitan open space system. 

 

This list is not exhaustive in terms of the items incorporated into the Metropolitan 

Area Plan.  However, it does represent the main conceptual base of the plan.  What is 

important to note about this is that while representing some obvious development planning 

principles for any city, the items do not represent the current state of development within 

the BMR.  The study of any given cross-section throughout the BMR yields evidence to the 

fact that the growth of Bangkok has not been adequately contained or properly ordered 

using sound planning practice.  The establishment of major transport corridors may have 

been completed to a certain extent.  However, these have contributed to exacerbating 

problems of congestion and air pollution throughout the city and the entire BMR.    Finally, 

the concentration of commercial and industrial development has not occurred, as these land 

uses are dispersed throughout the urban area.  Because these plans have been less than 

successful in many respects, several more recent policy improvement plans have come into 

effect. 

Specifically, more recent policy development has sought to address environmental 

impacts of urban expansion and industrial development.  In an interim report created by an 

M.I.T. Consultant Team (Hack et al., 1994) on strategic planning for the BMR, seven 

objectives on the development of the urban fringe area were proposed.  These objectives 

were: 
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1) to promote a jobs-housing balance in suburban sectors; 
2) to promote the use of transit in suburban areas, and for commuting; 
3) to encourage compatible mixed use development; 
4) to improve amenities in suburban centers; 
5) to allow for the decentralization of government employment; 
6) to assure the installation of infrastructure in advance of development; and 
7) to mobilize private expertise and capital in the creation of metropolitan centers. 

 

With these objectives in mind, Hack et al. (1994) note that several major planning 

initiatives were attempted in the BMR in the decade prior to 1994.  In particular, the 

decentralization of development within the BMR to create a “Chao Phraya Multipolis” that 

would see the creation of three major sectors in each region.  However, this would require 

costly transportation infrastructure and would not aid in rectifying the problem of 

continuous urban sprawl in the short term.  Second, there were planning initiatives 

undertaken to rationalize the systems of mass transit in the BMR.  Despite these initiatives, it 

is evident to anyone attempting to use the transit system in the BMR today that there is 

nothing rational about the system.  Buses continue to run on an incomprehensible time 

schedule and on continually revised routes.  Finally, major studies of urban development 

have been completed for the entire eastern side of the BMR in anticipation of the Second 

Bangkok International Airport development.  This airport is expected to begin operation in 

late 2004.   

Even though many studies have been completed, the list of Bangkok’s problems 

outlined by Edwards (1983) in terms of undesirable urban growth and development, are still 

as prominent today as they were almost 20 years ago.   It is argued in this thesis that the use 

of spatial information technologies will be able to facilitate improved planning practices such 

that this list of problems can be more effectively dealt with than in the past.  However, 

Durongdej (1995) notes that there are several shortcomings in the current Thai provincial 

development planning process that must be overcome.  In particular, she lists the following 

shortcomings: 

1) centralization of decision-making and budget control; 
2) a lack of cooperation among the government agencies; 
3) duplication of data sources and data quality; 
4) lack of public participation in planning; 
5) the time constraint; and 
6) plans do not respond to the real needs of the local people. 
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Given these shortcomings, Durongdej noted that while planning in Thailand 

improved systematically since the fifth plan (1982-1986), new planning frameworks and 

access to data were needed to facilitate a decision making process able to overcome the 

many existing problems with the Thai planning process.  Having noted this necessity for 

improved planning frameworks and data, the future directions of planning practice in 

Bangkok need to be further explored.   

The future of planning practice in Bangkok can take many forms.  However, several 

improvements in the facilitation of this practice are necessary before effective planning can 

take place.  Because of past failures to achieve coordination between private development 

and investment in infrastructure, Onchan (1997) pointed to the need to adopt a form of 

comprehensive land use planning that combined land use control with free market 

incentives.  Increases in land use efficiency could be achieved through property and land 

taxes, which would simultaneously decrease land speculation, and environmental impact fees 

could help to ensure sustainable and environmental correct growth and ultimately SUEM.  

Also, Onchan (1997) stated that while a number of policies, plans and initiatives were in 

place to improve environmental conditions, some of which are discussed in this section, they 

were still not effective.  He attributed their ineffectiveness to inadequate organizational 

capacity and a complete lack of institutional and governmental mechanisms to respond to 

the pervasive environmental impacts of the expanding economy and current patterns of 

social change (Onchan, 1997).  Furthermore, he noted that in the short term, the Thai 

government was unlikely to be able to meet the objectives of sustainable development and 

effective environmental management.   

Because of these problems, and because it is impractical to assume that Bangkok will 

stop growing and expanding anytime in the near future, it is necessary to determine a means 

to monitor and assist with the sustainable management of this growth.  A means of carefully 

planned and controlled development is possible and spatial information technologies can 

assist in achieving this type of planning.  The results presented in the following chapter show 

that urban growth can be effectively monitored and analyzed to identify the location of 

potential environmental stresses at the urban fringe.    
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3.2 Criteria for Selecting Specific Study Area 

The study area selected for analysis lies at the northern edge of Bangkok.  This area 

is the gateway to the BMR from the north and is an area of rapid urban development and 

land use change.  The study area centres around the point where the recently completed Don 

Muang Elevated toll way comes to an end near Future Park, Rangsit, the new, mega-shopping 

complex built in 1997.  The elevated toll way runs above the Phaholyothin Highway, the 

main roadway to the North and Northeast of the country.  This site was selected because of 

the rapid urban development occurring in the area and the high likelihood of identifying 

stress points.   

The land use in this area is characterized by various urban activities including roads 

and buildings (businesses and dwellings) mixed with idle lands, cultivated lands for 

agricultural use, and swamp lands.  The idle lands (shown on the left side of Figure 3-2) are 

typically left unused for crop or tree planting, as rising land prices brought on by urban 

growth has led to land speculation and the diversion of these lands from agriculture to an 

“unused state” in anticipation of increased value (Weimin, 1995).  Because of the activities of 

real estate speculators, industrialists, tourism growth and golf course development, an 

irreversible trend of agricultural demise in the region is occurring (Greenberg, 1994).  Sinclair 

(1982) further noted that due to the concentration of industrial and commercial activity in 

the BMR, there existed a highly skewed distribution of activity here, which is still typical of 

Thailand.  In general, much of the development noted by Sinclair has evolved in classical 

ribbon patterns along the main roads and minor roads or laneways (soi) have sprouted from 

these arterials (Figure 3-3), providing the basic spatial skeleton for an emerging sprawl of 

multi-use areas (McGee, 1994).   

The ‘Northern Corridor’ area, shown with the broader study area in Figure 3-4, was 

formally recognized during the Fifth Economic and Development Plan (1982-1986), when 

policy makers identified a potential zone of decentralized growth around and along the 

Phaholyothin Highway (Greenberg, 1994).  Along the highway, the standard characteristics 

of Bangkok’s classic ribbon development pattern are still clear, with shop-house businesses 

lining the edges of the road (Askew, 1996).  Administratively, the Northern Corridor area is 

bordered to the north by the changwat of Ayutthaya and to the south by Bangkok changwat.  
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Most of the area is flat and low-lying with the topographical characteristics belonging to a 

low basin sitting about 2-3 metres above mean sea level. 

 

Figure 3-2:  Idle Lands in Study Area Adjacent to Urban Growth Pocket (January, 2001) 

 

Figure 3-3:  Ribbon Development along Phaholyothin Highway (January, 2001) 
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The population in the Northern Corridor was enumerated as 80 684 in 1985 and was 

projected to be 162 400 in 2001, representing a 100% increase in 16 years (current year 

census information is not yet available)(Greenberg, 1994).  Housing settlement within this 

area varies greatly and includes apartments, townhouses and many worker dormitories.  One 

striking development of note is the large number of informal slums or settlements that have 

appeared with increasing population and industrial development (Greenberg, 1994).   

The two provinces to the north and northwest adjacent to Bangkok that are targeted 

in this research are Pathum Thani and Nonthaburi (refer to Figure 3-1 for location).  In 

particular, the Northern Corridor area shown in Figure 3-4 falls within Pathum Thani.  

However, Nonthaburi has also faced the impact of unstoppable urban sprawl over the last 

few decades and therefore also figures prominently in the research. 

3.2.1 Pathum Thani Province 

Pathum Thani (Figure 3-5) is a neighbouring province of Bangkok, located 

approximately 30 km directly north of the downtown Bangkok city centre.  It is located in 

the ‘rice bowl’ of the Central Plain, which is the most productive rice growing area between 

Ayutthaya to the north and Nonthaburi to the southwest, along the Chao Phraya River 

(Huan, 1995).  The total area of the province is 1528 square kilometres and it is bisected by 

an artificial, systematic and dense canal network used for irrigation, drainage and 

transportation (Huan, 1995).  However, road transport is one of the most important 

characteristics of the province as the main north/south highway into and out of Bangkok 

bisects it.   

The land use in the province is a confused mix of ribbon pattern rural and urban 

uses, mostly built-up along the main highway.   As mentioned before, a large amount of 

urban clustering occurs in the province along roads and canals.  Huan (1995) noted that in 

the early 1990’s there was a striking amount of land lying idle due to a lack of access or more 

commonly for speculative purposes.  Also there was, and continues to be, a noticeable 

difference in the density of urban land use along the major highways and the largely empty 

lands that flank this ribbon development.  Greenburg (1994) noted that much of the land 

within two kilometres of the Phaholyothin Highway was lying idle, presumably under 

speculation, with exorbitant land prices of Baht 2-3 million per rai (CDN $175000-265000 
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per acre) in the early 1990’s.  With continued pressure exerted on land available for 

development during the past decade this value will have significantly increased on equivalent 

parcels. 

 

Study Area Northern Corridor Changwat   
 

 

Figure 3-4:  Study area denoted on an Advanced Earth Observing Satellite (ADEOS) 
Panchromatic Image overlaid by BMR Changwats. 

In terms of urban growth, amphoe (district) Khlong Luang, within Pathum Thani 

province, saw its population more than double between 1970 and 1990 and during the same 

time period, its agricultural labour level fell fourfold (Greenberg, 1994).  Hence, Pathum 

Thani, like its southwesterly neighbour, Nonthaburi, has experienced much of the brunt of 

Bangkok’s expanding outer boundaries. 
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Figure 3-5:  Amphoes in the Changwat of Pathum Thani 

3.2.2 Nonthaburi Province 

Located to the northwest of Bangkok Province, the Province of Nonthaburi (Figure 

3-6) was approximately 48.1% farmland in 1991 (Askew, 1996).  The traditional agricultural 

land use in the Province has steadily declined throughout the 1990s to the present in the face 

of urban expansion.  The amphoes located closest to Bangkok have experienced the greatest 

amount of change in terms of land use transformation as commercial, industrial and 

residential uses have all moved into these areas over the last 20 years (Askew, 1996).  Now, 

the southern and eastern portions of the Province are built-up and western Nonthaburi is 

targeted for future housing estate expansion.   

Aside from these patterns, elongated settlement has often also occurred along the 

banks of the klongs.  Traditionally, this form of development facilitated easy access to water-

borne transportation.  However, over time this has become less important with the 

proliferation of the road network.  Over the past decade, Nonthaburi has been regarded as 

the dormitory residence area in the BMR.  Because of this, its viability as an agricultural 

province has slipped greatly in favour of the economic and social pressure associated with 

urban growth.  With a population of approximately 570000 in 1990, the projected 

population of Nonthaburi by 2015 will be 1.24 million (Hack et al., 1994).   
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Figure 3-6:  Amphoes in the Changwat of Nonthaburi 

Because of Nonthaburi’s proximity to Bangkok Province, the population growth and 

urban sprawl into this Province is inevitable and virtually unstoppable.  The only course of 

action is to devise and implement a form of development that is consistent with the goals of 

SUEM as presented in this thesis.   

3.3 Field Research 

The field research for the thesis was undertaken from the end of September 2000 

through to the end of January 2001.  Research, data collection, and preliminary data analysis 

were completed with the assistance of faculty in the School of Environment, Resources and 

Development and the School of Advanced Technologies at the Asian Institute of 

Technology (AIT), located forty-two kilometers north of central Bangkok.  In particular, the 

Asian Centre for Research on Remote Sensing (ACRoRS), provided assistance, data and a 

work area.   

3.3.1 RS Data Collection 

Several data sources were utilized in order to gather as much RS imagery and 

ground-based GIS data as possible during the fieldwork period.  Imagery available at 

ACRoRS and the School of Advanced Technologies at the AIT was used (Table 3-1).  An 
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Advanced Earth Observing Satellite (ADEOS) image of Bangkok from January 18th 1997 

was examined first.  The ADEOS satellite was launched August 17th, 1996, supplying 16 

metre resolution data on the earth’s environment for about ten months until it went out of 

orbit in June of 1997.  As it orbited the earth in a sun synchronous orbit at an altitude of 800 

km, ADEOS had a revisit period of 41 days.  More than 250 scenes in both multi-spectral 

and panchromatic sensor modes were acquired over Thailand during its operational time.  

Two images of Bangkok, one multi-spectral and one panchromatic, are used in this thesis.  

The multi-spectral image contains four channels, three in the visible and one in the near-

infrared portion of the electromagnetic spectrum, each with a spatial resolution of 16 meters.  

The panchromatic band (visible) has a spatial resolution of 8 meters.   

To allow for the temporal analysis of land cover change that is essential to the 

integrated framework presented in Chapter 2, other imagery had to be incorporated with the 

ADEOS panchromatic and multi-spectral images, as they were both captured in 1997.  In 

this case, a Landsat TM image from May 21st, 1995 was used.  The Landsat program is the 

longest running project for the acquisition of imagery of the earth from space. The first 

Landsat satellite was launched in 1972 and the most recent was launched in April 1999.  

Over the past three decades, Landsat satellites have captured millions of images from around 

the world for research and applications in agriculture, geology, forestry, and regional 

planning.  The Landsat imagery used here has an across-track swath of 185 km at 30-metre 

ground resolution cell size (except for the thermal band, which has 120 metre resolution).  

The Landsat TM sensor collects seven bands of data ranging from a wavelength sequence of 

0.45 micrometers in the visible blue through 2.35 micrometers in the mid-infrared portion of 

the electromagnetic spectrum. 

To enhance the temporal analysis, an Indian Resource Satellite (IRS) image from 

January 18th, 1998 is also included in the analysis.  The IRS-1C Satellite was launched on 

December 28th, 1995 using a Soviet launch vehicle.  Its orbiting altitude is 817 km and it has 

a 24-day repeat cycle.  There are three sensors onboard including a Panchromatic Camera 

(PAN), a multi-spectral LISS-III Sensor, and a Wide Field Sensor (WiFS).  An image 

captured with the LISS-III sensor is used in this thesis.  This sensor captures four bands 

ranging from 0.52 micrometers in the green portion of the visible spectrum to 0.7 
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micrometers in the near infrared portion of the electromagnetic spectrum with a spatial 

resolution of 23.5 metres.   

Satellite Sensor Orbit Acquisition 
Date 

Channels / 
Wavelength 

(um) 

Resolution 
(m) 

IRS-
LISS-III 

Multi-spectral 24 days / 817 
km 

Jan. 18, 1998 1. 0.52 – 0.59 
2. 0.62 – 0.68 
3. 0.77 – 0.86 
4. 1.55 – 1.7 

23.5 
23.5 
23.5 
23.5 

ADEOS (a) 
Panchromatic 
(b) Multi-
spectral 

41 days / 800 
km 

Jan. 18, 1997 (a) 0.52 – 0.69 
(b)  
1. 0.42 – 0. 5 
2. 0.52 – 0.6 
3. 0.61 – 0.69 
4. 0.76 – 0.89 

(a) 8 
(b) 16 

Landsat  Thematic 
Mapper 

16 days / 705 
km 

May 21, 
1995 

1. 0.45 – 0.52 
2. 0.52 – 0.6 
3. 0.63 – 0.69 
4. 0.76 – 0.90 
5. 1.55 – 1.75 
6. 10.4 – 12.5 
7. 2.08 – 2.35 

30 
30 
30 
30 
30 
120 
30 

Table 3-1:  RS Image Data Utilized 

3.3.2 Global Positioning System (GPS) Image Ground Truthing 

To assist in ensuring the positional accuracy of the RS imagery, several days of in-situ 

ground truthing were undertaken.  An Eagle Magellan GPS unit was used for data collection 

at various positions throughout the study area.  The GPS uses a precision achievable with 12 

parallel channel receptions to track multiple satellites simultaneously and to provide reliable 

and accurate navigational data.  Prior to May 2000, a system of selective availability was held 

in place by the United States government that reduced the civilian GPS accuracy levels to 

within 100 meters or less, 95% of the time.  However, since this date, selective availability 

has been eliminated and current positional accuracy with this unit is to within plus or minus 

10-20 metres.  More than 20 Ground Control Points (GCPs) - a point on the surface of the 

earth where both image coordinates (measured in rows and columns) and map coordinates 

(measured in degrees of latitude and longitude, feet, or meters) can be identified (Jensen, 

1996) - were collected throughout the study area (Figure 3-7). 
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While collecting the GCPs, detailed road characteristics were also identified at each 

location.  Attributes such as road width, number of lanes (if applicable), type of road surface, 

and adjacent features were all collected at each GPS waypoint.  Both the attribute data and 

study area photographs were used to assist with image analysis and interpretation.  Also, 

change detection analysis, discussed below, was better facilitated with this information by 

helping to improve image interpretation and to assist in the identification of certain image 

features.   

 

Figure 3-7:  Geographic Location of Select GCPs Collected with GPS Unit 

3.3.3 Ground-based GIS Data Collection 

The collection of ground-based GIS data proved difficult and required a great deal of 

travel around the BMR.  Ultimately, data were secured from several sources, including the 

Bangkok Metropolitan Authority, the National Statistics Office, the Royal Thai Survey 

Office, the Tourism Authority of Thailand and The Information Processing Institute for 

Education and Development at Thammasat University.  The tabular census data collected 

from these sources are listed in Table 3-2. 
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Source Tabular Data Description 
National Statistics Office • Pathum Thani, Nonthaburi, & Bangkok 

� Statistical Report of Changwat 2000 
� Statistical Report of Changwat 1996 
� Agricultural Census 1993 
� Population and Housing Census 1990 

Information Processing 
Institute for Education 
and Development 

• Village level socio-economic database from 1994 and 
1999 

Table 3-2:  Collected Tabular Data and Sources 

Also, various digital map layers were collected from several sources to facilitate the 

research.  Unfortunately, most of the data collected were poor in quality and no metadata 

were included to provide information pertaining to data quality, validity, and creation date.  

These data layers are summarized in Table 3-3 along with their known errors and measures 

undertaken to render them useful to this thesis. 

Digital Layer Data 
Source 

Error Source Applied Error Correction 

Administrative 
Boundaries 
• Provincial 
• District 

Internet • Incomplete data 
• Minimal Metadata 
• No coordinate system 

• Geo-registered to UTM 
coordinate system 

• Digitized/edited district 
boundaries where 
necessary to complete 
topological analysis 

Roads 1. Internet 
2. ACRoRS

1. Same as above 
2. Incomplete data, no 

metadata and 
unknown accuracy 

 

1. Geo-registered to UTM 
coordinate system 

Table 3-3:  Digital Data Layers Utilized 

3.3.4 Field Study Limitations 

Several limitations were encountered during the field study period and data (digital 

and hard-copy) collection process.  These include: 

1) The paper base maps generated by the Royal Thai Survey collected for this study 

were, in most cases, not up-to-date, nor were they in a usable digital format.  In general, 

there is a complete lack of available digital map resources for Bangkok at both government 

offices and educational institutions that were adequate in terms of accurateness and 
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completeness.  Part of the problem in terms of data availability is the fact that quite often 

there are many data sources in the city.  However, the bureaucracy is such that the 

different agencies and departments are unable to share their data resources.  Subsequently, 

there may in fact be a lot of data, but many persons and organizations are still information 

poor (Nghi and Kammeier, 2001). 

2) The RS and GIS data collection process was difficult and often hampered by 

language barriers and problems caused by midday traffic difficulties in downtown 

Bangkok.  These constraints limited timely and efficient movement between geographically 

dispersed offices.  On several occasions, it was only possible to make a visit to one 

government office per day. 

3.4 RS Data Processing and Analysis 

This section outlines the methods of RS data processing undertaken.  The methods 

of analysis used in this thesis are listed in Figure 3-8.  Specifically, this diagram is a direct 

subset of the integrated framework presented and discussed in Chapter 2 (Figure 2-3), and 

further outlined in the operational model, also presented and discussed in Chapter 2 (Figure 

2-4).  In several places the datasets (both RS and GIS) are numbered, for example (1), in the 

diagram to assist in the understanding of their methodological flows.  These numbers are 

referred to throughout the discussion below and are specifically derived from the detailed 

version of Figure 3-8, which is presented in Appendix I.   

Throughout the RS and GIS data processing analysis, several software packages were 

utilized.  Table 3-4 identifies the specific software and the specific analytic components used.  

Where possible, software neutral terminology is used throughout the remainder of the thesis. 

An important process related to the integration of RS and GIS technologies 

concerns spatial data creation.  In most cases, the mapping phase, which can be achieved 

either through automated feature extraction processes or via manual digitization, of 

converting satellite image information into GIS data is the most time consuming and 

expensive component of building a multi-source GIS database.  To achieve this, several 

analytic steps were undertaken with the temporal images to study land use change over time 
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as well as to explore street feature identification and extraction (as outlined in Figure 3-8).  

These analysis steps included: 

1. Geometric Corrections 
2. Change Detection 

o Binary-classification 
o Results Exportation 

3. Temporal Linear Feature Extraction 
o Results Exportation 

 
The geometric correction and change detection steps are now discussed in detail.  

Following the GIS analysis, the RS linear feature extraction is discussed (Section 3.8). 

 

Figure 3-8:  RS and GIS Processing and Analysis Methods 
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Table 3-4: Software Packages and Analytic Components 

3.4.1 Geometric Corrections 

Merging multi-sensor image data is a commonly used procedure in the study of land 

use and land cover change detection (Shaban and Dikshit, 2002).  Thus, the first step in the 

analysis is the geometric correction of the Landsat (1), ADEOS (2) and IRS (3) images.  

Existing, albeit inadequate, street and administrative boundary digital GIS layers were used 

to provide partial ground control points for the geo-referencing process.  Also, coordinates 

collected with the GPS receiver were used to provide additional positional accuracy.  The 

images were corrected to the Universal Transverse Mercator (UTM) grid coordinate system, 

Zone 47, with the World Geodetic System 1984, (WGS 84) Ellipsoid projection.  It was 

important that the images were geo-registered to the coverages in order to achieve successful 

future integration and analyses with ancillary ground-based GIS data.  The images were geo-

referenced to the BMR road and administrative boundary digital map layers, which were in 

Arc/Info GIS coverage format.  Once the first image was geo-referenced, all subsequent 

images were geo-referenced to this.  The 3rd order Root Mean Square (RMS) Error for these 

image to image registrations were 0.78 and 0.68, 2.25 and 1.49 and 0.67 and 0.55 for the 

ADEOS, Landsat TM and the IRS images respectively.   

Software Analytic Component 

PCI Geomatica 8.0 

• Image Geometric Correction 
• Image filtering (edge sharpening) 
• Change Detection 
• Binary-classification 

MATLAB 6.0 • Linear Feature Extraction 

ESRI ArcInfo 8.1 

• Digital Layer Geometric Correction 
• Z-score calculation and Amphoe Ranking 
• Image to GRID Conversions 
• GRID to Arc Conversion 

ESRI ArcView 3.2a 

• Road Network Buffers and Change Detection 
Proximity Analysis 

• Select By Theme New Roads 
• Localization of Potential Stress Areas 
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The RMS is a measure of GCP distortion as it computes the square root of the 

squared deviations to represent a measure of which GCP exhibit the greatest error while the 

model order determines the order of polynomial used to perform the registration warping 

(Jensen, 1996).  In general, the higher the order of polynomial transformation, the greater 

the number of GCPs required for registration and the more complex the warping that can be 

achieved.  Following registration, all of the images were clipped to the political boundary of 

the combined area of Pathum Thani and Nonthaburi Provinces. 

3.4.2 Change Detection 

Several approaches were investigated for image analysis.  First, change detection 

analysis was completed for both the Landsat (1) and the IRS (3) RS images.  The ADEOS 

image from 1997 was not used in this analysis as the Landsat image acquired in 1995 and the 

IRS acquired in 1998 provided the maximum temporal range for land use change detection.  

These approaches, including image overlay, image arithmetic (image differencing) and 

Principal Component Analysis (PCA), provided a good account of variability between 

different surface reflectances and thus successfully distinguished areas of change, particularly 

at the urban fringe.  Of these methods, the image arithmetic method was determined to be 

the most effective in terms of visually highlighting areas of change at the fringe and was 

therefore carried forward in the analysis. 

In image arithmetic, or raw image differencing, co-registered images from two dates 

are subtracted pixel by pixel (Yuan et al., 1998).  The resulting digital image represents the 

change between the two images with the same number of bands as the input images.  This 

process results in positive and negative values in areas of radiance change and values of zero 

in the areas of no change in a new image (Jensen, 1996).  In this thesis, the Landsat image (1) 

was subtracted from the IRS image (3) for arithmetic change detection (4).  A portion of the 

result of this image arithmetic is shown in Figure 3-9.  Subtractions utilizing bands 1, 2, and 

3 of the IRS and bands 2, 3, and 4 of the Landsat image were analyzed respectively.  The 

best combination of bands, based on visual interpretation, was selected for further inclusion 

in the analysis. 

 



 75

 

White = No Change Grey = Change / No Data (outside denoted amphoe boundaries) 

Figure 3-9: Change Detection Image Differencing Result (IRS Band 3 - Landsat Band 4) 

Interpretation of images can be generally achieved by visual inspection as gray tones 

represent areas of little or no change and areas of very bright or very dark, white and black 

respectively, as areas of temporal differences.  However, some of these differences in the 

rural areas of the study site can be attributed to differences in crops, time of year (seasonal 

variation) and crop rotation practices. 

A binary-classification was performed on the subtracted image (4).  This method was 

used to identify homogeneous areas of change thereby separating a region of change from a 

region of unchanged land cover.  This supervised classification, with training areas based on 

the arithmetic change detection results, produced a binary (change/no change) image of the 

study area based on the results of the change detection process. 

3.5 GIS Data Processing and Analysis 

In conjunction with the satellite image analysis, other methods were used to identify 

environmental stresses on the urban fringe of the study area.  Specifically, the analysis of 

district level census data for the provinces of Nonthaburi, and Pathum Thani was 

undertaken.  The initial steps undertaken in the GIS data processing included: 

1) Geometric Correction of Digital Layers 
2) Data Input 
3) Data Conversion 
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4) Z-score Calculation and Amphoe Ranking 
5) Data Relates 

The following sections outline the steps undertaken to input, correct, and analyze the 

census socio-economic tabular data. 

3.5.1 Geometric Correction of Digital Layers 

The first step in the GIS process flow in Figure 3-8, was to geo-register the digital 

data layers to the corrected digital roads layer.  This was achieved by defining the data 

projection and subsequently transforming the administrative boundary layer as necessary to 

facilitate future integration and overlay analysis.  The UTM, Zone 47, WGS 84 coordinate 

system, the same as that applied to the RS images, was applied to the GIS data layers.   

3.5.2 Data Input and DBASE Conversion 

This section outlines the analysis of indicators at the amphoe level in Pathum Thani 

and Nonthaburi to detect and locate areas of potential environmental stress.  The 

incorporation of socio-economic data is an important step in locating and analyzing trigger 

points at the rural-urban fringe.  Seven census-derived parameters were considered in this 

thesis:  population growth, population density, net migration change, acreage of land use / 

land cover under rural use, number of livestock, number of dwellings and number of 

registered vehicles.  All of these indictors were discussed in Chapter 2 (Figure 2-4).   

Population growth, population density, agricultural land use area, number of 

livestock and number of houses were all input and analyzed at the amphoe level of 

aggregation.  The information pertaining to net migration and number of vehicles was only 

available at the Provincial level for one of the time periods under examination.  Therefore, 

for these two indicators the Provincial totals were allocated to amphoes relative to population 

aged 20-65 for number of vehicles allowing these areas to be ranked in terms of their z-score 

calculation.  This step is discussed further below.   

Census data were entered from printed tables and a locational relation was created 

from the Provincial and District codes to facilitate their integration in subsequent stages of 

the analysis process.  The finished spreadsheets of data were converted to DBASE format to 

allow import of the tables into the GIS software. 
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3.5.3 Census Data Utilization, Z-Score Calculation and Amphoe Ranking 

To show proportional magnitudes for each indicator, z-scores were calculated.  The 

z-score for a variable is used to indicate how far and in what direction the variable deviates 

from a population mean of zero, with a standard deviation of one (standard normal 

distribution).  Once transformed to z-score values, each indicator has a mean of zero and a 

standard deviation of one.  The z-score is calculated as follows: 

 

 

where: 

zi is the z-score, or standard unit of area i,  
xi is the raw value for absolute x and area i,  
µ is the population mean of the set of data and 
σ is the population standard deviation of the set of data. 
 

Basically, the z-score represents the conversion of the absolute values of the variable 

under consideration into standard units.  Therefore, as the value of z increases, the variable 

moves further from the mean of the distribution.  A portion of the resulting table is shown 

in Table 3-5 pertaining to the changes in numbers of livestock in particular districts of 

Nonthaburi and Pathum Thani. 

Based on the z-score, each amphoe was ranked according to its environmental stress 

potential.  Each of the seven indicators was separately ranked from highest to lowest based 

on their z-scores in each amphoe.  The rankings were then summed for each amphoe over all 

indicators with the lowest sum representing the amphoe with the highest potential of 

environmental stress based on the seven combined indicators.  This process of amphoe 

ranking was completed to provide an assessment of temporal change within each amphoe 

relative to the surrounding amphoes.  This ranking was based on land use change as described 

by the seven indicators such that the amphoes were ordered from highest to lowest in terms of 

their potential contribution to environmental stresses.  The results of this summation are 

presented and discussed in the following chapter. 

To facilitate spatial analysis of the indictors, their z-scores and their potential 

environmental stress ranks were appended to the administrative boundary digital layer.  This 

xi - µ 
σ

zi = 3.1 
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was completed by relating the database containing the z-scores and rankings to polygons 

attributes (5) using the GIS software. 

 

District 
Index # 

Number 
Livestock 95 

Number Livestock 
99 

Difference in Livestock 
1995 and 1999 z-score 

2401 58798 31883 26915 -0.25 
2402 277521 405918 -128397 -0.56 
2403 18360 1150 17210 -0.27 
2404 315497 355206 -39709 -0.38 
2405 119980 38186 81794 -0.14 
2406 42838 121114 -78276 -0.46 
2801 146483 330548 -184065 -0.67 
2802 275758 98512 177246 0.05 
2803 264328 682524 -418196 -1.13 
2804 774825 272886 501939 0.70 
2805 1872505 215250 1657255 2.99 
2806 382950 247981 134969 -0.03 
2807 689939 466088 223851 0.14 

 
Table 3-5:  Portion of Database Containing Number of Livestock Information 

3.6 RS and GIS Integration and Analysis 

This section outlines the process of integration of the satellite imagery with the 

ancillary ground-based data within the GIS to detect and localize areas of potential 

environmental stress along the urban fringe.   

These analysis steps included: 

1. Image to Arc/Info GRID Conversion (4) 
2. Road Buffer and RS Change Detection Proximity Analysis 
3. Amphoe Ranking Based on RS Change Detection 
4. Temporal Land Use Change and Census Data Join (6) 
5. Localization of Stress Areas and Definition of Growth Management 

Policy 
 

Each of these stages of analysis is outlined in further detail below. 

3.6.1 Image to GRID Conversion and Vectorization  

The first step in the conversion from RS processes to the multi-source GIS database 

was to export the RS image files into GIS-ready format.  The derived areas of land use 
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change (4) were exported to Geo-TIFF files.  The TIFF format was selected for reasons 

outlined by Malcolm (1999) including: 

1) supported by GIS software 
2) may contain geo-referencing information in header tags 
3) supports black-and-white, grayscale, pseudocolour and true colour 

images. 
 

The Geo-TIFF image (4) containing the binary-classification of the change detection 

results was then converted to Arc/Info raster GRID format.  The image was converted to a 

GRID as an interim process as raster images can be more easily integrated in a multi-source 

GIS database.  Subsequent to GRID conversion, the original image file was converted in 

Arc/Info to a vector polygon coverage based on the change and no change classes.  This 

was achieved with the Arc/Info ‘gridpoly’ function in order to facilitate the integration of 

the land use change data derived from the RS imagery with the ground-based census data 

through a tabular join.   

3.6.2 Road Buffer and RS Change Detection Proximity Analysis 

To link further the results of the land use RS change detection analysis with the 

major transportation infrastructure at the urban fringe, a process of proximity analysis was 

undertaken at the provincial level.  Using the existing major road network digital layer, last 

updated in 1991, major roads in the provinces of Pathum Thani and Nonthaburi were 

buffered to distances of 100, 200 and 500 metres (Figure 3-10).  These buffered areas were 

then overlain with the binary classification of the RS change detection analysis (4) to 

determine the proximity of detected change to the existing road network circa 1991.  The 

analysis was completed at the province level to demonstrate the overall correlation between 

detected change between 1995 and 1998 and existing arterial roads. 

3.6.3  Amphoe Ranking Based on RS Change Detection 

To show the amount of actual change that had occurred in each of the amphoes based 

on the results of the RS change detection analysis, the actual total area of change for each 

amphoe was analyzed.  First, the total area of change in each amphoe was calculated.  Then, 

using the known total amphoe areas, percentages of change were calculated for each amphoe by 
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dividing the area of change, less any areas of no data, by the total area of the amphoe.  Based 

on these percentages, the amphoes were ranked from highest to lowest change values. 

 

Figure 3-10: Major Roads with 100 metre Buffer 

3.6.4 Temporal Land use Change and Census Coverage Data Joining 

With the temporal land use change layer converted to a polygon coverage and the 

census data attached to the administrative boundary polygon coverage, a tabular data join 

between the two polygon digital layers was completed (4 and 5).  The join allowed for a 

combined spatial analysis of the features of the two input layers (6).  Specifically, the 

combined rankings from the seven census indicators and the change detection area rankings 

were combined to facilitate a ranking of the amphoes based on these two datasets.     

3.7 Localization of Stress Areas & Growth Management Policy 

The methods identified above were used to detect potential areas of environmental 

stress in the study area.  To this end, the results were used to determine the areas in the two 

provinces that had experienced the fastest and largest rates of urban growth and therefore 
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with the highest potential for environmental stress.  Once the localization of potential stress 

areas was complete, these areas were reviewed for use in the temporal linear feature 

extraction analysis based on their ranking.  Ultimately, one area was selected for continued 

analysis due to its high overall ranking indicating a strong potential for environmental stress. 

Based on the results, attempts could be made to define new growth management 

policy.  Policy development, in a wider sense, includes both strategic policy and operational 

budget development (McGill, 2001).  At the centre of the emergent growth management 

policy is the fact that identified areas of potential stress allow planning practice to work 

toward achieving SUEM.     

Using the methods outlined in this Chapter, it is expected that at least one of 

Durongdej’s (1995) points on her list of shortcomings in the current Thai provincial 

development policy, outlined earlier, can be alleviated.  Specifically, problems associated with 

duplication of data sources and, in particular, data quality can be improved through the 

integration of RS and GIS source data to facilitate environmental stress indicator analysis.  

With timely and accurate information about the changing morphology at the rural-urban 

fringe of Bangkok, the difficult process of planning for current and future growth and 

subsequent land use change will hopefully be mitigated.   

3.8 Temporal Linear Feature Extraction 

Edge detection is the principal means of detecting from imagery roadways and other 

linear features that have definite boundary edges, as discussed in Chapter 2.  If homogeneity 

can be found within a certain region bounded by a sharp, contrasting periphery, this 

represents the edge of this particular feature.  In this case, specific edge detection algorithms 

included in the Image Processing Toolbox of the MATLAB software package were utilized 

to attempt to isolate the road network from the satellite imagery. 

In this portion of the analysis, only the area termed as the Northern Corridor was 

analysed.  This limited geographical focus was used because if roads could be isolated within 

this area, then they could also be isolated in the broader study area.  Because the Northern 

Corridor is the fastest growing area within the Provinces of Pathum Thani and Nonthaburi 
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with the most rapid growth over the last decade, it was deemed the best location to test the 

accuracy and effectiveness of the linear feature extraction process outlined below.   

To enhance the edge detection capabilities of the algorithms, an edge sharpening 

filter was applied to the images prior to edge detection and extraction.  This procedure was 

implemented to assist in the efficient processing of images to detect linear features and to 

ensure enhancement in areas where low-contrast existed between road features and adjacent 

man-made and natural features.  A sample of the edge sharpening is shown in Figure 3-11. 

 

 
Figure 3-11:  Results of Edge Sharpening Filter (7 x 7) With ADEOS Image 

The edge-sharpening filter uses a subtractive smoothing method to sharpen an image 

by first averaging the image and subsequently attenuating the high frequency features such as 

edges and lines.  Following this, the averaged image is subtracted from the original image 

and the remaining features of the resulting difference will be primarily the high frequency 
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edges and lines.  Finally, the original image is added back to the edge enhanced image 

creating the final image to reveal greatly enhanced high frequency detail.  The filter smoothes 

the image while at the same time sharpening edges within the image, which is desirable in 

this methodology. 

The edge-sharpening filter navigates through the image using an n x n window.  For 

this thesis, windows of size 3 x 3 through 11 x 11 were tested in an iterative process.  The 

results of these tests are discussed in more detail in the next chapter.  Following the filtering 

process, the images were exported to TIFF format. 

To enhance the imagery further prior to applying the edge detection algorithms, 

histogram equalizations were applied.  Histogram equalization enhances the contrast in an 

image by transforming its intensity values so that the output image matches a specified 

histogram.  If no output histogram is specified, a flat histogram of the image is generated.  

Similar to the edge sharpening filter, 3 x 3 through 11 x 11 histogram equalization windows 

were applied to the images in an iterative testing process. This process was utilized to 

enhance optimally the contrasting edges between linear features in the image and any 

adjacent non-linear features.  The results of the histogram equalization are shown in Figure 

3-12 with the IRS image prior to enhancement on the left and the histogram-equalized image 

on the right.   

The methods of feature extraction used were developed through an iterative process 

of edge detection algorithm examination.  Several edge detection algorithms are available 

including the Sobel, the Laplacian of Gaussian, and the Canny algorithms.  Figure 3-13 

compares the use of each algorithm on the Landsat image.  The Sobel algorithm performs a 

spatial gradient measurement of an image using a pair of 3 x 3 convolution kernels to 

emphasize regions of high spatial frequency, which are equivalent to edges (Fisher et al. 

2000).  Convolution can be defined as means of multiplying two arrays of numbers of 

different sizes to produce a third array of numbers.  For example, a small matrix, as shown 

in Table 3-6, also known as a kernel, could be multiplied together to produce a third matrix 

of numbers in a convolution.  Similarly, the Laplacian algorithm is used to highlight regions 

of rapid intensity change using a convolution filter (Fisher et al., 2000). 
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Figure 3-12: Histogram Equalization Comparison of IRS Image of Northern Corridor 

 The Canny edge detector algorithm was designed to be an optimal edge detector 

that works on a multi-stage process (Fisher et al, 2000).  First, the image is smoothed using a 

Gaussian convolution.  This step is used to blur the image to remove unnecessary noise.  

Subsequently, an operation is applied to the image to highlight regions of the image with 

high contrast.  These contrasts are representative of edges, as they often correspond to high 

magnitude gradients in the image.  Finally, the algorithm maps the gradients along these 

ridges to produce the linear edge outputs. 
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Figure 3-13:  Edge Detection Comparisons with Landsat Image 

 

-1 0 +1  +1 +2 +1 

-2 0 +2  0 0 0 

-1 0 +1  -1 -2 -1 

Table 3-6:  Sobel Convolution Kernals 

Each of the Sobel, Laplacian, and Canny methods were sequentially applied to all 

three images, which had been clipped to the Northern Corridor boundary (1,2,3 from Figure 

3-8).  The results of each analysis were visually inspected for the clarity of the extracted road 

features from the different types of imagery under examination.  The results were evaluated 

and accordingly accepted or rejected.  If accepted, the extracted road segments were kept 

and advanced to the next stage in the overall methodology (2=7, 3=8 from Figure 3-8).  If 

rejected, alternative algorithms were iteratively tested until the best extraction results were 

achieved.  Figure 3-14 presents the results of the edge detection a portion of the ADEOS 

Panchromatic image from 1997 within the Northern Corridor using the Canny algorithm set 

to the lowest edge detection threshold (0.1).   At this point, only the ADEOS and IRS 
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images (7 and 8) were carried forward in the analysis.  The reasons for this are outlined in 

the following chapter when the results of the procedure are presented and discussed. 

 

 
Detected Feature Edges 

Figure 3-14:  Canny Algorithm (0.1) at lowest threshold (ADEOS Image) 

3.8.1 Conversion of Temporal Land Use Information and Extracted Linear Features to 
GIS 

The extracted linear features (7,8) were already in TIF format so no export was 

required.  Similar to the process used with the RS change detection Geo-TIFF, the images 

were converted to the Arc/Info raster GRID format.  After being converted to a GRID, the 

temporal land use change image was automatically converted in Arc/Info to a vector line 

coverage using the ‘gridline’ function.  By automatically converting to a line coverage, the 
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extracted edges were represented by arcs that could be further analyzed to determine their 

potential as new road segments.  Also, by using the ‘gridline’ function, all of the edges were 

automatically processed without any manual intervention at this point.  This was desirable 

because the ability to extract the edges automatically and subsequently generate an arc 

coverage was one of the objectives of the thesis. 

3.8.2 Selecting New Road Segments by Layer 

Utilizing the two vectorized segments of extracted linear road features (7 and 8), a 

process of selecting the features within these vectorized map layers was undertaken to 

separate the newest road segments from older ones.  First, using a ‘Select By Layer’ function, 

the extracted features from the 1998 IRS image (8) were selected if they were within a 

specified distance of the extracted features of the 1997 ADEOS image (7 creating stage 9).  

Various distances were experimented with, as it was desirable to locate areas of potential 

environmental stress at a slightly larger search area based on the extracted features.  Once 

selected, the results were inverted such that the selected features of the original IRS image 

were now the features that were greater than the specified distance from any of the extracted 

features in the original ADEOS image (10).  The selected features were then put into a new 

ESRI shapefile for further analysis, as they had now been determined to be ‘new’ sections of 

the extracted features developed within the study timeframe (11).  

Ultimately, an integrated RS/GIS multi-source/multi-temporal database was created 

from the results of the RS land use change detection, ancillary census data analysis and the 

RS feature detection and extraction results.   

3.9 Summary 

This chapter has outlined the methods used to analyze and classify the study area 

based on its exposure to potential environmental stresses and its current state of 

development.  First, planning practices in Bangkok were discussed to set the stage for the 

necessity of the integrated framework used in the thesis.  Following this, a discussion of the 

study area was provided including an examination of the morphology of the provinces 

within which the study area is located.   



 88

Finally, the research design was discussed.  This methodology was created to make 

operational the integrated framework presented and discussed in Chapter 2 (Figures 2-1 to 2-

3).  Several research techniques were used to obtain the necessary RS imagery and ground-

based GIS data and an integrated RS and GIS process flow was outlined demonstrating the 

work undertaken.  The next chapter presents the results of the research based on this design. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

This chapter extends the discussion in Chapter 3 by presenting and discussing the 

results derived from the previously outlined methods.  The results are presented in several 

sections.  First, the outputs of the RS data processing and analysis are discussed.  This 

includes first the temporal change detection and, following the census data analysis, the 

linear feature extraction is discussed.  The first part of the RS analysis is an important step in 

determining the overall success of identifying areas of potential environmental stress.  The 

subsequent feature extraction RS analysis was driven by the results of the combined change 

detection work and the GIS data analyses, which are then presented and discussed.  

Secondary GIS data results are analyzed and incorporated with the results of the RS change 

detection analyses based on the stages of the integrated framework outlined in Chapter 2 and 

the detailed methods explained in Chapter 3. 

4.1 RS Change Detection Data Processing and Analysis 

This section builds upon the discussion in Chapters 2 and 3 by presenting the results 

of the RS analysis stages outlined in the integrated model (Figure 2-3) and the research 

design.  The analyses involved the examination of several indicators of environmental stress 

detectable in the RS imagery.  The analysis steps used in the thesis include temporal change 

detection and linear feature identification and extraction.  The results of the first part of the 

RS analysis are now presented in detail.  The latter results pertaining to feature extraction are 

presented following this discussion and the subsequent census data analysis results. 

4.1.1 Change Detection 

The change detection analysis of the RS images produced results that were successful 

in terms of differentiating between pre-existing and new development in the Provinces of 

Nonthaburi and Pathum Thani during the period of 1995-1998.   
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As expected, the identified areas of change within Pathum Thani and Nonthaburi lie 

mostly at the immediate urban fringe of the greater Bangkok Metropolis.  More specifically, 

change is especially evident within the area termed as the Northern Corridor in Pathum 

Thani and the districts of Lam Luk Ka, Thanyaburi, Khlong Luang and Muang Pathum 

Thani (Figure 3-5).  This area is delineated in yellow on the image in Figure 4-1.  

Interpretation of the change detection image provided the following results: 

1) minimal to no change is noticeable throughout most of the urban areas, as 
illustrated by the medium grey tone in the image (not including ‘no data’ area 
to southeast of Pathum Thani and Nonthaburi); 

2) some of the notable differences, visually the significantly darker and brighter 
tones, in the predominately rural areas are attributable to differences in crops 
and time of year (January 1998 versus May 1995); 

3) some of the very bright areas throughout the image may be characteristic of 
land currently under development (from bare soil to developed land use); 

4) the brighter and darker areas at the urban fringe and along the Northern 
Corridor represent the areas of greatest change between 1995 and 1998 in 
terms of urban land use development. 

Examples of the locations that typify these general observations are numerically 

denoted (yellow numbering) and are shown in separate close-up images in Figure 4-1. 

Based on these general observations, more detailed conclusions can be stated in 

terms of the temporal changes at the urban fringe during the time frame under investigation.  

First, and of greatest significance, the area in Pathum Thani along the Northern Corridor is 

particularly prominent in terms of definite detectable urban development between 1995 and 

1998.  This assists in affirming the expectation that this area is, in fact, one of the most 

rapidly growing areas at the urban fringe of the Bangkok Metropolis is likely to be one of the 

areas most susceptible to potential environmental stresses.  This indication of rapid growth 

is further confirmed with the ground-based census data analysis discussed later in this 

chapter. 

Second, it is visually evident from the change detection image that the areas of 

change form a band along the known edge of the Bangkok Metropolis.  In particular, within 

this band, areas of change are most evident along major roadways and waterways.  This 
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pattern is consistent with the expected forms of ribbon development predicted in the thesis.  

Total areas and locations of change are further discussed in the following two sections. 

 

   
     Northern Corridor  

Medium Gray = No Change Darker and Brighter Tones = Change 

 

  

Area 1 – Medium gray tone 
denotes no change in urban 

regions. 

Area 2 – Some change, brighter 
areas, in rural regions may be due 

to crop rotation. 

1 

2 3

4 
No Data 
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Area 3 – Some very bright tones 
may be attributable to land 

currently under development. 

Area 4 – Pockets of generally 
darker and brighter areas denote 

change. 

Figure 4-1:  Areas of Noted Change Detection Between 1995 and 1998 in Pathum Thani and 
Nonthaburi 

4.1.2 Change Detection Binary-classification 

A binary classification (Figure 4-2) was applied to the change detection results to 

provide a homogeneous representation of the regions of change within the study area. 

The production of the change detection results in this format allowed them to be 

integrated with GIS analysis.  The total calculated area of change, excluding the areas of no 

data (no concurrent satellite coverage), was 266.7 square kilometres (26,676 hectares) while 

the total area of no change was 1058 square kilometres (105,805 hectares).  The total area of 

both provinces, less the areas of no data, is 1324 square kilometres (132,482 hectares).  This 

represents a percentage change of 20.1%. 

4.1.3 Change Detection by Amphoe in a GIS 

Utilizing the results of the change detection and binary-classification, the image was 

subdivided to determine the total amount of change in each amphoe.  Once divided, the total 

area of change per amphoe was calculated and then ranked in order from greatest to least 

(Table 4-1).  The ranking was based on the percent of change of the total area of the amphoe, 

less any areas of no data.  The amphoe with the most change at 29.37 percent was Thanyaburi, 

in Pathum Thani Province.  This represented a total area of change of 55.41 square 

kilometres (55,41 hectares) out of 124.3 square kilometres (12,430 hectares).  Not 

surprisingly, three of the top five ranked amphoes are directly adjacent to Bangkok Province 

and the other two, Thanyaburi and Bang Bua Thong, are next in terms of concentric 
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outward growth amongst the provinces.  The total area of change for the top eight 

provinces, those directly adjacent to Bangkok province as well as Thanyaburi and Bang Bua 

Thong, was 514.7 square kilometers (51,470 hectares) out of a total area of 1286 square 

kilometres (128,600 hectares).  This represents a significant amount of detected land use 

change in these provinces.  Table 4-1 presents the results in total areas and percentages of 

land use change for all the amphoes and Figure 4-3 displays the change detection amphoe 

rankings based on percentage change for the Provinces adjacent to Bangkok Province. 

 

Figure 4-2:  Binary-classification of Image Arithmetic Change Detection Results 

 As anticipated, the provinces that contain the Northern Corridor are all within the 

top seven of the thirteen amphoes, and represent three of the top four from Pathum Thani - 

Lam Luk Ka, Thanyaburi, and Khlong Luang.  These results are supportive of the overall 

conjecture of this thesis, namely that a great amount of land use change is occurring along 

the urban fringe of Bangkok, and in particular, along the Northern Corridor.  Based on these 
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results, and the census indicator analysis, the Northern Corridor is confirmed as an 

appropriate location for linear feature detection and extraction. 

 

Figure 4-3: Change Detection Amphoe Rankings  

Notable in Figure 4-3 is the high percentage change detected in Muang Nonthaburi, 

Pak Kret, Muang Pathum Thani, Lam Luk Ka and Thanyaburi, with change detection 

rankings of 3, 5, 4, 7 and 1, respectively. 
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In general, these results can be applied to the stages of development outlined in 

Chapter 2 (Figure 2-4).  Specifically, the amphoes that have experienced the largest percentage 

of detected change have the greatest potential for environmental stress as they are evolving 

quickly from Stage 1 to Stage 2 or 3 or from Stage 2 to Stage 3.  If this movement is 

occurring too quickly, these areas are decidedly suspect in terms of localized rapid land use 

evolution and potential for consequent environmental stress.  Supportive evidence that this 

is occurring are the relatively short time frame being investigated, 1995-1998, and the large 

percentage of detected change, up to 29% in some of the amphoes. 

4.1.4 Road Buffer and RS Change Detection Proximity Analysis 

The analysis of the road buffer and the RS change detection proximities in the 

provinces of Pathum Thani and Nonthaburi revealed some important correlations in terms 

of substantiating one of the conjectures of this thesis.  By applying a 100 metre buffer to the 

existing road network (from 1991) and selecting areas of noted change within this buffer, a 

total area of change of 25.87 square kilometres (2586.96 hectares) was detected within 100 

metres of existing roads.  This represents approximately 10% of all change noted within the 

combined provinces of Pathum Thani and Nonthaburi.  Increasing the buffer to 200 metres 

raised the total detected change to 65.33 square kilometres (6532.97 hectares), or 

approximately 25% of the total detected change, as shown in Figure 4-4.  This total 

represents a significant proportion of the change within a narrow buffer adjacent to existing 

roads.    

Finally, by increasing the road network buffer further to 500 metres, the total 

detected change within this buffer is 154.98 square kilometres (15498.17 hectares).  This 

represents 59% of the total detected change of both provinces combined.  These results are 

notable in terms of providing a conclusive link between the results of the RS change 

detection and existing transportation infrastructure.  They also serve to confirm further that 

a significant portion of new urban growth is occurring in close proximity to roadways. 
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Figure 4-4:  Detected Change Within 200 metres of Existing Roads 

With the change detection analysis complete, the census data in the Provinces of 

Nonthaburi and Pathum Thani are discussed. 

4.2 GIS Data Analysis and Processing 

Prior to discussing the integration of RS and GIS data, the results of the census GIS 

data are presented.  

4.2.1 Temporal Land Use Change and Census Coverage Intersection 

The analysis of the seven indictors of potential environmental stress in the provinces 

of Pathum Thani and Nonthaburi produced interesting, yet expected results.  Table 4-2 

displays the overall amphoe rankings for the two Provinces.  Amphoe Lam Luk Ka in Pathum 

Thani province had the lowest summation of individual district rankings signifying that it is 

the district with the highest potential for environmental stress based on the seven indicators 

examined (Figure 4-5).  Lam Luk Ka had the highest ranking of all districts in terms of rate 

of population growth, decrease in observed agricultural land and decline in the total number 

of livestock between 1995 and 1998.   Second and third to Lam Luk Ka comes amphoes 

Muang Pathum Thani and Khlong Luang, both located in Pathum Thani Province.  It is not 

surprising that these three districts are at the top of this order because the Northern 
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Corridor and Phaholyothin Highway directly bisects both Lam Luk Ka and Khlong Luang, 

and it is partially located within Muang Pathum Thani.  This result is consistent with the 

general expectation that locations adjacent to recent road and highway development show 

the greatest propensity for rapid land use change and hence potential stress on the 

preexisting and predominately rural environments.  However, slightly contrary to 

expectations, Thanyaburi, the amphoe in-between Lam Luk Ka and Khlong Luang is ranked 

tied for sixth (out of 13) with amphoe Muang Nonthaburi.  One factor that might explain the 

relatively low score for Thanyaburi is that it has an elongated shape from east to west and it 

is narrow from north to south.  Since Phaholyothin Highway runs north to south through 

these three amphoes, its growth inducing effects are likely to have been less substantial in 

Thanyaburi than in either Lam Luk Ka or Khlong Luang.   

The amphoe in the fourth position is the top ranked amphoe in Nonthaburi.  Bang Bua 

Thong is located centrally in Nonthaburi and is therefore somewhat of a surprise in terms of 

its ranking based on the growth indicators.  However, it is not surprising that Bang Bua 

Thong is followed by the two amphoes in Nonthaburi that are located in the southeast portion 

of the province, Bang Yai and Muang Nonthaburi.  Given the known existing growth 

patterns in the Bangkok Metropolis discussed earlier, the results for these amphoe rankings 

are as expected.  Also, tied for sixth in the ranking is Thanyaburi, as noted above.  Finally, it 

is also of note that the two amphoes that are last in the ranking are Nong Sua and Lat Lum 

Kaeo, both in Pathum Thani and both located at the northern most corners of the province, 

farthest geographically from Bangkok Province and from the Northern Corridor region. 
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Figure 4-5:  Potential Environmental Stress Amphoe Rankings Based on Census GIS 
Indicators 

4.2.2 RS Change Detection and GIS Census Data Integration 

The separate examination of the results of the change detection and the census 

indicator analyses, outlined individually above, generally indicate similar results in terms of 

areas of change and thus areas of potential environmental stresses.  However, alone, neither 

is as persuasive as when the two methods are combined for environmental stress detection at 

the amphoe level.  The change detection results, ranked based on total area of detected 

change, were added to the overall rank sum of the seven census GIS-based indicators.  This 

provided a new overall rank summation.  Table 4-3 presents the amphoe ranking results based 

on the combination of the change detection analysis integrated with the results of the census 

indicators analysis.   

The results of the rankings are illustrated in Figure 4-6.  Based on the results 

presented in Table 4-3 and displayed in the figure, some minor, yet notable adjustments to 

the previous amphoe rankings are apparent.  In general, the overall amphoe rankings changed 

little and in fact, the addition of the RS change detection rankings served to confirm further 

the results of the GIS-based indictor analysis.  The final two columns in Table 4-3 display  
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the current amphoe rankings and the previous amphoe rankings prior to the addition of the RS 

change detection analysis results.  Lam Luk Ka and Muang Pathum Thani are ranked equally 

at the top and Khlong Luang is ranked fourth, instead of third, flipping spots with Bang Bua 

Thong.  Aside from the upward movement of Bang Bua Thong, the ordering of the other 

three amphoes is directly in line with the suggestion that the areas of potential environmental 

stress are located in the amphoes that contain the Northern Corridor.  Also, it should be noted 

that while Bang Bua Thong may seem an anomaly being ranked above Khlong Luang, this 

amphoe is in the centre of Nonthaburi, a province that has seen unprecedented growth and 

urban development over the past decade.  While it is not directly adjacent to Bangkok 

Province, it is within the range of Bangkok’s known prior sprawl patterns and has thus been 

affected by a significant amount of leapfrog growth. 

 

Figure 4-6:  Potential Environmental Stress Amphoe Rankings Based on Integrated 
RS Change Detection and GIS Indicators 

Also of note is that Thanyaburi has moved up one position in the rankings with the 

integrated RS and GIS results, from sixth to fifth, out of the thirteen amphoes. Having moved 

into only the top third in terms of amphoes that exhibit the greatest potential for 

environmental stress, it is evident that the shape of Thanyaburi continues to contribute 

significantly to its position in the rankings.  However, because the addition of the RS change 
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detection results moves Thanyaburi into fifth position, it is a strong indication that at least 

the western portion of this district is experiencing rapid land use change and urban 

development.  

4.2.3 Land Use Classification and Localization of Detected Stress Areas 

Based on these integrated ranking results, it is evident that the Northern Corridor 

represents an unmistakable region of significant urban growth and thus has increased 

potential for environmental stresses above and beyond other regions within Pathum Thani 

and Nonthaburi.  

In general, the results of the integration of data derived from both the RS and GIS 

analyses, has, at the district level, divided the provinces of Pathum Thani and Nonthaburi 

into areas of varied susceptibility to environmental stresses.  This classification system can be 

extrapolated into the stages of development outlined in Chapter 2 (Figure 2-4).  Specifically, 

the zones of greatest potential for environmental stress based on these ranking are most 

likely to be located in Stage 2 or Stage 3 in terms of built-up land.  These districts are likely 

to be characteristic of these stages of development in terms of the seven indicators of 

development derived from the census data and in terms of the RS change detection analysis.  

Further, the amphoes with the lowest potential for environmental stress based on the overall 

rankings are more likely to be located in Stage 1 or the early part of Stage 2.  This type of 

generalized stage classification is possible because the seven census indicators and the RS 

change detection were selectively included in this analysis given their expected potential to 

indicate change from rural to urban land use at the amphoe level. 

4.3 Linear Feature Extraction 

The next step in the overall operational framework focuses on the detection and 

extraction of linear features from temporal imagery in an attempt to locate new road 

development as potential indicators of urban growth and of higher potential environmental 

stress.  Because the Northern Corridor was revealed, through earlier analysis, to be the area 

in either Pathum Thani or Nonthaburi that has experienced some of the largest actual and 

implied urban growth, this sub-region was targeted for feature extraction analysis. The 

results of this process are now presented. 
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Based on preliminary results, it was evident that the Canny algorithm produced the 

best results in terms of quality of linear edge detection and number of edges located.  

Further, because the Canny algorithm was specifically designed as an edge detector and has 

been described as the ‘most powerful’ edge detection method available (The MathWorks 

Inc., 2000), it was deemed the best option for continued analysis in terms of linear feature 

detection and extraction. 

The threshold value used with the Canny algorithm produced varying ranges of 

extracted edges.  Ultimately, a threshold of 0.2 was used for the ADEOS image and a 

threshold of 0.1 was used for the lower resolution IRS and Landsat images to ensure the 

capture of all desirable edges and in particular, any known or potential road segments. 

4.3.1 Edge Detection with 1995 Landsat TM Imagery 

The Landsat TM from 1995 performed, in general, inadequately in terms of its use 

for effective linear feature extraction.  Figure 4-7 depicts the results of the extraction process 

with the original image (post pre-edge extraction sharpening) in the background.  A visual 

inspection of the results quickly reveals that the low spatial resolution of the image did not 

allow for an effective detection and extraction of many discernable features, including roads.  

Even though several pre-detection image enhancements had been performed, as discussed in 

Chapter 3, the results for the Landsat image in this scene were inferior when compared to 

results achieved with other higher resolution imagery. 

Due to the unsatisfactory results produced with the Landsat image, it was removed 

from further examination in terms of attempting to detect the development of new roads in 

the Northern Corridor.  Unfortunately, this left only a one-year time frame for investigation 

since the remaining available images were captured in 1997 and 1998 respectively.  

Nevertheless, given that one of the objectives of this thesis is to capture newly developed 

roads at the rapidly expanding rural-urban fringe, it is possible that new roads were 

developed in a time period of less than a one year.  This rate of development is not 

uncommon in both the developing and the developed world as new roads, and often 

complete subdivisions, appear in North American cities at rates faster than one year from 

groundbreaking to completion. 
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Background Image 

Landsat TM 
Band 4 = Red 
Band 3 = Green 
Band 2 = Blue 

Figure 4-7:  Extracted Edges in the Northern Corridor Using the 1995 Landsat TM Image 

4.3.2 Edge Detection with 1997 ADEOS Panchromatic Imagery 

The ADEOS Panchromatic image from 1997 produced the best relative results in 

terms of edge detection and linear feature extraction (Figures 4-8 and 4-9).  With the highest 

spatial resolution of the three images (8 metres) the ADEOS image detection results are 

visually superior.  Nonetheless, similar problems were experienced to those of the Landsat 

image, such as the detection of non-linear and non-road features.  However, these were not 
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as problematic as with the Landsat image.  Also, many known features, including roads, were 

also apparent as successfully extracted items.  Relative to the other two images, the ADEOS 

Panchromatic image produced the most extracted features, also due to its higher spatial 

resolution. 

 
Background Image 
ADEOS Panchromatic 

 
Band 1 

Figure 4-8:  Extracted Edges in the Northern Corridor Using 1997 ADEOS Panchromatic 
Image 
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Background Image 
ADEOS Panchromatic 

 
Band 1 

Figure 4-9:  Central Portion of the Northern Corridor Extracted Edges ADEOS Image 

4.3.3 Edge Detection with 1998 IRS Multi-Spectral Imagery 

The results for the IRS image feature extraction can be placed in-between those of 

the relatively successful ADEOS image and the unsuccessful TM image (Figure 4-10).  This 

can once again be attributed to the spatial resolution, as the IRS image has a slightly higher 

resolution than the TM image at 24 meters, but still lower than the ADEOS image.   

It is clear from the image segment that the edge detector, when utilized with the 

lowest threshold, has the ability to detect every edge in the image notwithstanding varying 

image intensities.  In terms of the linear features, given the relatively low spatial resolution of 

the images under investigation, the algorithm was most effective at detecting larger highways 

and roadways within the study area.  This is evident in Figure 4-10.  While detectable, 

secondary roads were visually difficult to distinguish from other types of edges detected 

within the imagery.   
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Background Image IRS Band 3 = Red 

Band 2 = Green 
Band 1 = Blue 

Figure 4-10:  Northern Portion of the Northern Corridor Extracted Edges Using 1998 IRS 
Image 

4.3.4 Combined Edge Detection Results 

Common amongst all of the imagery examined is the fact that the number of edges 

detected and extracted is more prolific in the urban areas of the Northern Corridor as 

compared to the relatively more rural areas.  This phenomenon is particularly prominent 

along the major arterial roads and is evident immediately adjacent to Phaholyothin Highway, 

which bisects the Northern Corridor.  Moving from south to north along the highway, a 

pattern of dense development is apparent adjacent to the highway relative to more outlying 

locations (Figure 4-11).   

Aside from these edges, it is also evident in Figure 4-11, and the previous four 

figures (4-7 through 4-10) that many non-linear and non-road man-made and natural 

features have also been detected and extracted by the Canny algorithm.  This pattern of 

extraction supports one of the conjectures of this thesis in that the ability to extract linear 

features from satellite imagery is greatly affected by the location of the study area.  

Specifically, an urban study area tends to produce extraction results that are more disorderly 
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and less successful relative to a rural study area.  This is due to the density of features, man-

made and natural, in an urban area with spectrally unique image values.  This proliferation of 

unique values in close proximity forces the detection and extraction of many edges in the 

urban scene.  Unfortunately, current extraction algorithms are not able to distinguish 

successfully between these urban features automatically and to generate such an algorithm is 

beyond the scope of this thesis. 

 

Figure 4-11:  Phaholyothin Highway (inside box) and adjacent detected features 

Following the extraction of the edges, the IRS and ADEOS images were written to 

TIF image format and then imported into Arc/Info as GRIDS.  Using the ‘gridline’ 

command, they were then automatically converted to ARC coverages. 

4.4 Further Integrative RS and GIS Analysis of the Northern Corridor 

This section provides an examination of the integration between the features 

extracted from the RS imagery and the further temporal analysis of these features in a multi-

source GIS.    

The results of the conversion from GRIDs to ARC coverages further reveals the 

over abundance of edges that were detected and extracted.  In particular, the ADEOS image 
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is inundated with edges that are clearly not representative of roadways in many cases.  To 

improve these conditions, some manual editing of both ARC coverages was necessary to 

remove some of the more obvious non-road features.  However, limited manual removal of 

lines was performed to ensure that potential minor road segments were not mistakenly 

deleted.   

Also, manual checking was completed to verify that any discrepancies between the 

extracted lines from the two images were minimal and that the extracted lines were 

coincidental to allow for the ensuing overlay process.  Discrepancies were potentially caused 

by several possibilities including geo-referencing inconsistencies, edge extraction variability 

and raster to vector conversion divergences.  In general, minimal, and largely insignificant 

inconsistencies were visible between the two images. 

One other source of extracted feature discrepancy represented the largest source of 

inconsistency between the extracted lines.  This divergence was a result of the difference in 

image spatial resolution.  Some of the extracted features are misaligned in the two time 

periods by up to a maximum of approximately 50 metres.  This number is consistent with 

the differences between the two spatial resolutions, eight for the ADEOS versus 24 for the 

IRS, and the range of variation potential that was possible for the same features in each 

image.  This range is evident in Figure 4-12 where the red (ADEOS) extracted arcs do not 

match up exactly with the blue (IRS) extracted arcs.  To account for this variability in spatial 

resolutions and subsequent positional accuracy dissimilarities in the feature selection by 

theme stage, the next and final step of this thesis uses a wide selection distance to ensure 

only potential new line segments are selected. 

4.4.1 New Feature Segment Selection by Layer 

Utilizing the results of the ‘gridline’ conversion along with some subsequent manual 

coverage editing, a selection of temporally extracted features was undertaken.  Using a ‘Select 

By Layer’ procedure, features from the 1998 IRS image were selected that were within a 

certain distance of features extracted from the 1997 ADEOS image.  Distances ranging from 

5 to 50 metres were input in an iterative process of determining the most successful at 

returning the highest number of potential new features.  Ultimately, it was determined that a 
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median distance of 25 metres was most efficient at capturing more established new features 

and eliminating minor edge variances that were being captured at a shorter buffer distance 

 
Figure 4-12:  Overlaid Detected and Extracted Features from ADEOS (red) and IRS (blue) 

Images 

Once the selection by digital layer was completed, the resulting selection was 

inverted such that the selected items were now the features located at the specified minimum 

distance from any feature extracted from the 1997 image (Figure 4-13).  
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Figure 4-13:  Extracted IRS Features At Greater Than 5 (blue) and 50 (red) Metres From 
Extracted ADEOS Features 

While it is quickly apparent that many of these selected features are not roads, the 

possibility that some of them are new roads is high given that many of the arcs are located 

in-between major arterial roads throughout the Northern Corridor.  This would suggest that 

some of these new lines might be roads that would have been recently constructed to link 

major arterial roads.  Alternatively, these new lines may simply be new extensions to existing 

roadways as growth occurs outwards into new areas of development.  The only method of 

determining whether or not these new lines are actually roadways was through manual visual 
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inspection of each arc overlaid with the IRS and ADEOS imagery to determine actual 

feature status.   Figure 4-14 depicts the 1998 IRS image overlain by the extracted features 

selected as being at a distance greater than 25 metres from any extracted feature from the 

1997 ADEOS image. 

 
Background Image IRS Band 3 = Red 

Band 2 = Green 
Band 1 = Blue 

Figure 4-14:  Extracted IRS Features Greater Than 25 Metres Overlaying IRS Image 
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4.4.2 New Road Determination Results 

Manual examination of these new lines reveals the potential for some preliminary 

conclusions in terms of whether extracted features are actually representative of new road 

development or not.  However, given the inability to state with a high degree of certainty 

whether these features are road segments, conclusions are speculative at best.  For example, 

some segments branching out along Phaholyothin Highway may indeed be new roads 

supporting the rapid urban sprawl occurring along the highway (Figure 4-15).  

Unfortunately, given the generally low spatial resolution of all of the imagery under 

examination, it is impossible to conclude that any of these segments are indeed new roads. 

Therefore, in terms of the results presented above, while the outcome in this context 

is less than conclusive, it can be stated that the operational process outlined here could 

potentially be utilized in other more conducive situations and alternative study sites to detect 

and effectively extract features from satellite imagery.  Specifically, an entirely rural study 

area would be more likely to allow for the generation of improved results when utilizing this 

operational process, as the number of extracted image features would be greatly reduced, as 

would be the intensity and number of edges.   

4.5 Process Simplification with AML Generation 

Due to the wide range of steps and software packages utilized in this thesis, the 

creation of one application to enhance and simplify the utilization of this process was not 

possible.  Analyses in PCI Geomatica, MATLAB and Arc/Info has complicated this 

process, however each was necessary to produce the best possible results based on the 

available data.  Nevertheless, since the majority of the steps following the edge detection in 

MATLAB were completed using Arc/Info, it was deemed appropriate to develop these into 

an Arc Macro Language (AML) program that allows interactive input, analysis and output 

for several stages of the overall operational framework.  In general, this AML takes the 

output edges from MATLAB in TIF format, converts them to a GRID, performs a 

GRIDLINE operation to generate an ARC coverage and finally, outputs the ARC coverage 

for subsequent selection of new features by theme.  The program code is included in 

Appendix II. 
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Background Image IRS Band 3 = Red 

Band 2 = Green 
Band 1 = Blue 

Figure 4-15:  Potential New Road Segments Along Phaholyothin Highway 

4.6 Summary 

This chapter has described the results derived from the implementation of the 

integrated framework outlined in Chapter 2 and further discussed in the context of an 

operational methodology in Chapter 3.  Starting with the RS change detection analysis, the 

results of each stage of the methodology were presented and reviewed.  This was extended 

to include the change detection and road proximity analysis, the census-based GIS indicator 

analysis, the integrated amphoe rankings, the localization of areas of potential environmental 

stress and the linear feature detection and extraction.  The final product was a multi-source 

and multi-temporal GIS database that had the capability to locate areas of environmental 

stress in the rural-urban fringe of Bangkok. 

Based on these results, Chapter 5 presents the conclusions of the thesis.  Also, a 

review of the overall effectiveness of the process is discussed along with some 

recommendations for further research. 



 116

CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter provides a synopsis of the central arguments presented in this thesis 

and outlines the conclusions derived from the results obtained.  Also, suggestions for growth 

management policies with respect to improved policy formation and planning practice are 

presented.  Finally, some recommendations for future research are discussed as well as 

practical applications and implications for the use of RS and GIS to achieve sustainable 

urban environmental management (SUEM) in developing countries.   

5.1 A Synopsis of the Argument 

The main objectives of this thesis were: (i) to develop to an integrated framework 

based on the concepts of SD and UEM for the achievement of SUEM in cities in developing 

countries and (ii) to detect land use change and indictors of potential environmental stresses 

at the urban fringe of Bangkok.  The need for a methodology to evaluate land use 

conversion at the urban fringe is apparent from the current planning and urban growth 

management systems in place in the Bangkok Metropolitan Region (BMR).  Typically, 

planning decisions are ad hoc and reactive in the absence of up-to-date information on 

population growth and urban sprawl.  Even with past attempts at long-term planning, the 

provision of necessary urban infrastructure has dragged well behind urban growth rates. 

Population growth and urban sprawl are placing immeasurable amounts of stress on 

natural systems in and around the BMR.  To address theses stresses, improved sustainable 

urban environmental management is necessary.  To this end, the integrated framework that 

is presented and analyzed in this thesis seeks to address some basic needs of SUEM through 

the use of spatial information technologies.  Through this integrated and structured 

framework, areas of potential environmental stress at the rural-urban fringe are identified 

and classified so that they can be targeted for proper sustainable growth management.   
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The need for this integrated approach was made apparent in Chapter 2 where 

sustainable development and urban environmental management were first discussed in the 

context of cities in developing countries.  Next the use of SIT, including remote sensing and 

GIS, were discussed in terms of their uses for improved planning practice in developing 

countries.  An integrated framework was then introduced uniting the concepts of SD and 

UEM to form SUEM, with the operational processes created through the use of SIT.   

Chapter 3 presented the Research Design developed to achieve the objectives 

presented in Chapter 1 and discussed in Chapter 2.  Also, the planning practices in Bangkok 

were addressed.  The discussion turned to an analysis of the specific study area and its 

morphology.  The design of the methodology, discussed in the last half of Chapter 3, was 

created to make operational the integrated framework outlined in Chapter 2.  The design is 

comprised of RS imagery analysis, ground-based GIS data analysis and an integrated analysis 

combining the RS and GIS source data.   

Chapter 4 presented and discussed the results derived from the methods outlined in 

the research design.  The discussion in this chapter was structured to illustrate how the 

integrated framework was made operational through the methods used in the thesis.  In 

particular, this chapter demonstrated how potential indicators of environmental stress that 

are detectible in RS imagery and derivable from ancillary census data can be combined and 

analyzed within a multi-source and temporal GIS database to facilitate improved SUEM.   

5.2 Thesis Conclusions 

Conclusions regarding each portion of the thesis are presented here including the 

image analysis, linear feature extraction, and the indicators and locations of potential 

environmental stresses at the urban fringe of Bangkok. 

5.2.1 RS Change Detection Analysis Conclusions 

Overall, the steps undertaken in the RS imagery analysis produced some interesting 

and useful results.  First, the change detection using image arithmetic produced anticipated 

results in terms of the determined locations of change.  As noted in Chapter 4, the areas of 

detected change corresponded with the presupposed locations of change in terms of their 

locations along the urban periphery of Bangkok Province.  Some further examination and 
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alternative change detection experimentation, such as principal component analysis or image 

overlay, could potentially reduce errors in the change detection results and binary 

classification.  However, given that the results were as predicted, it is expected that only 

slight improvements in accuracy could be achieved for this section of the thesis methods.  In 

part, the low spatial resolution of the imagery assisted in facilitating these results by 

producing a general smoothing that would have otherwise been cluttered by extensive detail 

in a higher resolution image.  This produced a more homogeneous surface for the change 

detection process to detect and classify larger adjacent areas of change at the urban 

periphery.  However, a consequence of this was a potential loss of precision in terms of 

localizing change. 

Overall, the outcome of the amphoe rankings based on the results of the arithmetic 

change detection were as expected.  These rankings assisted in the identification and 

confirmation of the areas in the Provinces of Pathum Thani and Nonthaburi that are 

experiencing rapid urban growth and, by extension, are most susceptible to potential 

environmental stress. 

5.2.2 Census Indicator Analysis in GIS Conclusions  

The incorporation of the seven census indicators analyzed in the thesis also provided 

useful information in terms of the amphoes ranking based on their magnitude of change over 

the time frame examined.  The results of this temporal change ranking were generally as 

expected such that the amphoes showing the greatest amount of change based on the 

combined indicators were very similar to those selected with the RS change detection 

rankings.  These results serve to reaffirm the selection of the Northern Corridor as one of 

the areas within the two provinces that is rapidly developing along the urban periphery of 

the BMR. 

5.2.3 RS and GIS Integration and Localization of Stress Areas 

Throughout the thesis, the benefits of RS and GIS integration were stressed.  This 

integration was proven to provide timely and necessary information about land use change 

to planners in developing countries.  Overall, the integration of the RS change detection and 

the census indictor results provided increased utility and validity to each other in terms of 

raising the level of certainty in localizing the regions with the highest potential for 
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environmental stress.  Through this combination, the classification of the amphoes into the 

stages of development as outlined in Chapter 2 was more easily and accurately facilitated.  

This assisted in the localization of areas of stress that ultimately led to the identification of 

the Northern Corridor as an appropriate area within Pathum Thani and Nonthaburi for 

more detailed analysis of road feature extraction.   

Overall, the framework presented here represents an important contribution to the 

future prospects of RS and GIS integration in terms of analyzing change at the urban 

periphery of any city, not only within developing countries.  The localization of areas of 

stress will help to ensure improved urban environmental management through the timely 

detection of areas requiring protection and improved environmental supervision.  Protection 

could potentially come in the form of an environmentally sensitive area designation while 

improved supervision may involve increased monitoring of development to ensure 

adherence to environmental protection guidelines.  Once these areas are located, 

modifications to government policy to include future protection and improved growth 

management, such as region-wide infrastructure planning or integrated waste management 

systems, will ultimately assist in the provision of SUEM throughout the urban periphery.   

Development of a growth management strategy involves a balanced combination of 

planned growth, environmental integrity and economic viability.  The integrated framework 

presented in this thesis has the potential to provide for each of these items.  First and 

foremost, planned growth is essential as population grows and the number of households 

increase at an equal or even greater rate relative to population.  As new development occurs, 

it must eventually be accommodated with improved road, water and wastewater treatment 

infrastructure.  To ensure this, new policies must be implemented in developing countries to 

ensure planned growth as opposed to existing random development patterns.  However, 

these policies cannot be devised without adequate information related to the location and 

form of new development, and this is where the integrated framework can make a 

substantial contribution to planning policy formation. 

Environmental integrity can be achieved through an improved planned growth 

initiative.  The need to protect prime agricultural land, woodlands and environmentally 

sensitive areas is important in terms of the economy of a city or region and also to the 
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quality of life of its residents.  Water resource protection and conservation must become a 

primary objective of cities in developing countries.  The integrated framework can also serve 

to facilitate improved planning practice in terms of early detection of areas of environmental 

stress that may require an environmentally sensitive area protection policy. 

Finally, economic viability is something that all cities, regions, and countries strive to 

achieve.  As noted in Chapter 2, the desire to achieve economic growth and profit has often 

come at the opportunity cost of negative impacts on the natural environment.  It is hoped 

that the integrated framework presented in this thesis might be able to assist policy 

formation in regards to improved land use planning through the provision of timely land use 

change information.  This will potentially ensure environmental sustainability and land use 

compatibility while at the same time not hindering economic prosperity. 

5.2.4 Feature Extraction and New Road Determination Conclusions  

Russ (1995) points to the following as the two major problems with edge detection: 

1) it cannot by itself complete the segmentation of the image because it has to be 
given each new starting point and cannot determine whether there are more 
outlines to be followed; and 

2) the same edge-defining criteria used for following edges can be applied more 
easily by processing the entire image and then thresholding … [however] this 
produces a line of pixels that may be broken and incomplete.   

These two points are evident in the results achieved in this thesis.  In particular, the 

automatic processing of the Northern Corridor resulted in broken pixels and incomplete 

data, not to mention an overabundance of detected and extracted features.   

This analysis has provided a general picture of potential new road development in 

the Northern Corridor.  Unfortunately, the results are disorderly and it is difficult to prove 

with any high level of confidence that the extracted features can be accurately identified as 

new roads.  In order for a more detailed picture to be developed, the extraction process 

would need to be examined in further detail to determine if a means of more accurate road 

identification could be realized. 
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This further examination could potentially involve a three pronged approach 

including a reevaluation of the commercial software and algorithms used in the thesis; the 

potential use of a pre-existing or newly developed linear feature extraction stand-alone 

application to the images under investigation; and the substitution of the current images with 

new, higher resolution images into the existing integrated framework for renewed analysis. 

The use of alternative commercial software with enhanced feature extraction 

capabilities could provide improved results in terms of the quality and quantity of the 

extracted features.  Within these alternative packages, algorithms other than the Canny 

algorithm may be available that might be more successful in extracting man-made features 

such as roads.  Related to this, the use of a pre-existing feature extraction application may 

also improve results.  For example, the LSB-Snakes application, designed by Gruen and Li 

(1997) and discussed in Chapter 2, may be a viable alternative.  To date, the use of LSB-

Snakes has been successful in rural scenes, but has yet to be fully tested in an urban setting.  

The substitution of higher resolution images is discussed further below in the 

recommendations and implementation section (5.5). 

Since one of the main objectives of this thesis was to provide a semi-automatic 

means for the extraction of linear features, the overall results of this portion of the analysis 

are disappointing.  However, due to a general inability of an edge detection algorithm to 

distinguish successfully between extracted features, little can be done at this point to 

improve the results.  Consequently, based on the available edge detection technology and the 

complexity of the study area, the results can be generally considered successful as potential 

new road features were indeed extracted and localized.  These new roads segments can 

further be used to identify specific areas of rapid urban growth and expansion into new, 

previously undetected, areas of urban land use development. 

5.3 Growth Management Policy 

The failure to manage the environment and to produce sustainable development is 

evident in all countries.  Because environmental management and development are not 

separate challenges, environmental stresses and patterns of economic development are 

closely linked (WCED, 1987).  Based on the results of this thesis, it has been demonstrated 
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that there are many facets of urban planning that may be better facilitated through the use of 

spatial information technologies.  Specifically, the localization of areas of potential 

environmental stress through the integrated RS change detection and GIS census indicators 

procedure, will allow local planning authorities to target problem areas for improved 

infrastructure provision and to make possible sustainable environmental management.    

In terms of further facilitating growth management policies, the amphoe ranking 

results based on the integrated RS and GIS indicator analyses will provide a particularly 

effective means to determine the districts of highest and fastest urban growth.  Thus, 

improved, more environmentally sustainable policies can be created and applied to the 

amphoes with the highest rankings.  As noted above, these rankings may also be used to direct 

general growth management policy in terms of applying stages of development to the 

provinces and districts adjacent to Bangkok Province. 

Specific environmentally sustainable policies must include some or all of the 

following requirements:  

1) A region (BMR) wide land use and infrastructure development plan; 
2) Protection and environmental enhancement of agricultural and other natural 

resources;  
3) Providing an integrated regional transportation system; 
4) Managing water supply and waste management to ensure service and to minimize 

negative environmental impacts; and  
5) Monitoring change to appropriately adjust policies and actions. 

(adapted from Regional Municipality of Waterloo, 1998) 

The creation and implementation of policies with these requirements in mind will 

only be possible if a regional approach to planning within the broader BMR is undertaken 

through partnerships between the provincial and municipal governments.  The integrated 

framework presented in this thesis seeks to assist in the creation and implementation of such 

policies by providing more timely and accurate information pertaining to the location and 

morphology of urban growth and change at the district level within the BMR.  This 

information is a fundamental input to the creation of accurate and informed policy to guide 

growth and provide protection of the rural and natural environments.   These data are also 

fundamental in the monitoring of change to allow for appropriate adjustments to existing 
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policies and for providing a starting point for action in terms of rectifying improper and 

environmentally unsustainable urban sprawl. 

5.4 Thesis Objective Conclusions 

Overall, the integrated framework developed in the thesis, based on the concepts of 

SUEM, has been shown to make operational an effective process of environmental stress 

detection through the integration of RS and GIS spatial information technologies.  

Specifically, RS change detection analysis has been shown to allow temporal land use 

classification in terms of change versus non-change areas in the Provinces of Pathum Thani 

and Nonthaburi.  Additionally, the GIS census indictor analysis has also been shown to 

classify amphoes in these provinces in terms of land use change and potential environmental 

stress rankings. 

The temporal extraction of road features from RS imagery is the only specific 

objective of this thesis that has not been completely fulfilled.  Generally, the process utilized 

was effective at detecting and extracting features.  However, the quality and ability to 

distinguish between the types of the extracted features was unsatisfactory.   Some 

recommendations on how these results might be improved are discussed below. 

5.5 Recommendations and Implementation 

The principal recommendation that comes out of this thesis is the need to transfer 

the methods outlined here to other scales of research.  Specially, if data were available at, for 

example, the property or plan of subdivision levels, the process of analyzing the ground-

based indicators could be moved to a larger scale to provide a finer level of detail in terms of 

accurately detecting areas of potential environmental stress.  By acquiring this level of data, 

detailed population characteristics could be detected and analyzed.  Unfortunately, the 

collection of this level and type of data is currently very problematic, especially in developing 

countries. 

The use of higher resolution satellite imagery would allow for a more discrete 

analysis of the existing road network.  As mentioned in Chapter 2, high-resolution satellites 

such as IKONOS and QuickBird, whose imagery are becoming readily available to 
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researchers in developed countries, will allow for the detection and analysis of detailed road 

characteristics.  However, as the roads become more distinct in these high-resolution images, 

other features also become more visually and spectrally unique relative to their adjacent land 

uses.  This means that rooftops, building footprints and other detailed urban features will 

appear as sharp edges in terms of feature extraction.  Hence, the use of these images in an 

urban setting could become even more problematic than their lower resolution ancestors. 

To overcome this problem, the algorithms utilized in the detection and extraction of 

edges need to be more intelligent than the available automatic and semi-automatic 

algorithms. As discussed in Chapter 2, several on-going research projects are attempting to 

automate further the process of linear feature extraction.  Many of these projects are 

operating in exclusively rural areas and only a few have ventured into the urban fringe 

and/or an entirely urban setting.  Until edge detection algorithm technology becomes ‘smart’ 

enough to discriminate between adjacent urban land uses that are spectrally different, 

migrating the processes used in rural scenes will not be possible. 

In terms of implementation, given the complexity of the processes utilized in this 

thesis, some potential requirements are recommended.  First, and particularly for 

implementation in developing countries, a less complex process must be established.  Fewer 

steps would be beneficial in terms of implementation in a developing country by 

streamlining the process.  This could be partially achieved by limiting the number and types 

of software packages necessary to produce viable results.  The use of PCI, MATLAB, and 

Arc/Info in this thesis was required in an attempt to generate the best possible results in 

terms of land use change detection and feature extraction.  Unfortunately, the result is a 

complex process that involves a relatively large amount of data conversion across expensive 

software platforms and different spatial data structures. 

The process of methodological consolidation begun in this thesis was facilitated 

through the creation of an AML program that incorporates the methods of analysis 

undertaken in Arc/Info.   The generation of this AML is the extent of what could be 

completed towards this goal given the scope and objectives of this thesis.  Further 

development of an application to carry the datasets, both RS and GIS, through the entire 

process would be desirable in terms of simplifying the entire operational framework.  
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However, the development of such an application will not be possible unless all analyses 

done in both PCI and MATLAB are removed from the process.  This would result in a large 

loss of RS imagery analysis and utility and is therefore not a recommended option of 

simplification if this framework is to be implemented as designed.  An alternative option 

would be to complete all analysis within PCI, removing both Arc/Info and MATLAB from 

the process resulting in a large loss of GIS specific data analysis ability.  While the difficulties 

of implementation of these methods in a developing country increases with complexity, the 

framework as presented represents a favourable methodology for integrated RS and GIS 

analyses to detect areas of potential environmental stress. 

Despite the less than satisfactory results of the transportation feature extraction 

portion of the thesis, other results at the district level provided a substantial contribution 

through the identification of trigger points of environmental stress and subsequent policy 

development.  An important benefit of implementation can be realized when this integrated 

framework is used to address policies related to urban growth and provide value for 

decision-making.  By providing utility to the process of detecting and rectifying areas of 

environmental stress, the framework presented in the thesis has the potential to bring SUEM 

practice into the planning process within the Bangkok Metropolitan Region.  

All good research poses as many questions as it answers.  This thesis has done both 

by answering questions pertaining to the location of areas of environmental stress at the 

northern fringe of Bangkok, while posing new questions about how to improve the 

detection and extraction of transportation features from satellite imagery.  The answers 

provided will assist urban planning in Bangkok through the application of spatial 

information technologies to provide the basis for a better understanding of urban growth 

and land use change at the rural-urban fringe. 
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GLOSSARY 

ACRoRS Asian Center for Research on Remote Sensing at the AIT 

ADEOS Advanced Earth Observing Satellite 

Amphoe Thai census/administrative boundary – equivalent to a county  

AIT Asian Institute of Technology 

Baht Thai currency.  CDN $1 = approx. 28 Baht (as of September, 2001) 

BMR Bangkok Metropolitan Region – typically designed to include the Bangkok 
Metropolitan and its immediate surrounding changwats including Samut 
Prakarn, Pathum Thani, Nakhon Pathom, Samut Sakhon, and 
Nonthaburi.   

CELADE Latin American Demographic Centre 

Changwat Thai census/administrative boundary – equivalent to a province 

CIDA Canadian International Development Agency 

CUC-UEM Canadian Universities Consortium – Urban Environmental Management  

DC Developing Countries 

GDRC The Global Development Research Center 

GIS Geographic Information System 

GPS Global Positioning System 

ECLAC Economic Commission for Latin America and the Caribbean 

ESRI Environmental Systems Research Institute 

IT Information Technology 

PCI PCI Geomatics – Producer of EASI/PACE Imaging Analysis Software 

RAI Thai unit of area.  1 rai = 0.4 acre = 1600 square metres 

RS Remote Sensing (can include satellite remote sensing or RS) 

SD Sustainable Development 

SE Southeast (Asia) 
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SIT Spatial Information Technology 

SUEM Sustainable Urban Environmental Management 

TM Thematic Mapper (Landsat TM) 

UEM Urban Environmental Management 
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APPENDIX II 

Arc/Info Operational Process AML Code 
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/* Filename: mes.aml 
/* Purpose:  MES Thesis - Arc/Info Automatic Coverage Generation from MATLAB 
/*  Image Files Containing Extracted Binary Features from the Northern 
/*  Corridor of Bangkok, Thailand 
/* Author: Neil Malcolm 
/* Last Modified 14/04/2002 
/* You must run this AML program from ARC level 
 
&type 
&type * This program takes user input of 2 binary image files (in TIF format) exported  
&type * from MATLAB, coverts them to GRIDS and then to ARC coverages using  
&type * standard Arc/Info commands including 'imagegrid' and 'gridline'. 
 
display 9999 size 1000 650 
 
/* Input image filenames here 
&type 
&sv image1 = [response 'Enter the name of the first TIF image'] 
&type 
 
&sv image2 = [response 'Enter the name of the second TIF image'] 
&type 
 
&type * Cleaning up unnecessary files ... 
&if [exist grid1 -directory] &then  
  &do 
    kill grid1 all 
    &type 
  &end 
 
&if [exist grid2 -directory] &then  
  &do 
    kill grid2 all 
    &type 
  &end 
 
&type 
&type * Converting TIF images into GRIDS 
imagegrid %image1% grid1 nearest 
imagegrid %image2% grid2 nearest 
&type 
 
/* The following step is necessary because when the TIF images are  
/* output from MATLAB, their binary values are reversed (ie) the background  
/* has a value of 1 and the extracted features have a value of 0.   
/* Therefore, the GRIDS need to be reclassified such that the background cells  
/* have a value of 0 and the extracted features have a value of 1.  Without  
/* this step, the GRIDLINE command with 'positive' parameter will  
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/* not work at required. 
 
/* Open GRID 
grid 
 
&type * Reclassifying GRIDS to invert binary cell values using the remap.txt ascii file ... 
grid_re1 = reclass(grid1,remap.txt) 
grid_re2 = reclass(grid2,remap.txt) 
 
quit 
&type 
 
/* A geo-referenced coverage is necessary to transform the ARC coverages 
/* that are being created in this process because images are processed 
/* and features are extracted in MATLAB, all geo-referencing is lost.   
/* Therefore, when the images were exported from PCI to TIF format for  
/* further analysis in MATLAB, one image was immediately brought into 
/* Arc/Info so that the geo-referencing information was not lost.   
/* The TICS from this coverage were used as the geo-referenced coverage. 
 
&sv geo_cov1 = [response 'Enter the name of the Geo-referenced coverage'] 
&type 
 
&type * Generating temorary process files ... 
copy %geo_cov1% geo_cov1_ 
copy %geo_cov1% geo_cov2_ 
&type 
 
&sv cover1 = [response 'Enter the name for the first final output ARC coverage'] 
&type 
 
&sv cover2 = [response 'Enter the name for the second final output ARC coverage'] 
&type 
 
&type * Cleaning up unnecessary files ... 
&if [exist %cover1% -directory] &then  
  &do 
    kill %cover1% all 
    &type 
  &end 
 
&if [exist %cover2% -directory] &then  
  &do 
    kill %cover2% all 
    &type 
  &end 
 
/* Automatically convert GRIDS into ARC coverages 
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&type * Creating ARC coverages ... 
gridline grid_re1 arc1 positive 
gridline grid_re2 arc2 positive 
&type 
 
/* transform ARC coverages to Northern Corridor boundaries 
&type * Transforming ARC coverages to known coordinate system ... 
transform arc1 geo_cov1_ 
transform arc2 geo_cov2_ 
&type 
 
&type * Renaming generated coverages ... 
rename geo_cov1_ %cover1% 
rename geo_cov2_ %cover2% 
&type 
 
&type * Building ARC topology ... 
build %cover1% line 
build %cover2% line 
&type 
 
/* clean up temporary files 
&type * Cleaning up unnecessary files ... 
kill arc1 all 
kill arc2 all 
kill grid1 all 
kill grid2 all 
kill grid_re1 all 
kill grid_re2 all 
&type 
 
&type * The following ARC coverages have been created: 
&type 
&type %cover1% 
&type 
&type %cover2% 
&type  
&type * Both coverages will now be opened in ArcEdit for visual inspection. 
&type * Also, future manual editing of the extracted features may be desirable. 
&type 
&sv next = [getchar '* Press ENTER key to continue'] 
&type 
 
/* Visual inspection of the results provided in ArcEdit. 
/*  
display 9999 size 1000 650 
 
/* Open ArcEdit 
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ae  
 
/* Make Final Cover # 1 the Background cover 
bc %cover1% 2 
be arc 
 
/* Make Final Cover #2 the Edit cover 
ec %cover2%  
de arc 
 
draw 
 
&pause 
 
/* Quit ArcEdit 
quit 
 
&type 
&type 
&sv next = [getchar '* This program is complete, press any key to end the program'] 
&type 

 


