Show simple item record

dc.contributor.authorTunkar, Bassam
dc.date.accessioned2016-01-14 18:49:00 (GMT)
dc.date.available2016-01-14 18:49:00 (GMT)
dc.date.issued2016-01-14
dc.date.submitted2015-12-10
dc.identifier.urihttp://hdl.handle.net/10012/10131
dc.description.abstractThe interest in scavenging various energy sources from the environment is rapidly increasing. Thanks to the advances in developing effective energy harvesters researches. Kinetic energy is a renewable source and it can be found numerously in the environment. One of the most popular class of the kinetic energy harvesters in this field is vibration energy harvesters (VEH). It is an electrical source that converts the vibrational energy into usable electrical energy to power up low-power portable or unreachable devices. The harvesting system can be self-powered as stand-alone or as alternative power source depending on the application. In this thesis, we have studied and developed two architectures for electromagnetic VEHs: a baseline VEH and a springless VEH. We introduced and studied power management circuits consisting of a full-wave bridge rectifier and a smoothing capacitor. Moreover, electromechanical model was developed and validated by the comparison to the experimental data. The basic electromagnetic VEH uses a mechanical mass-damper-spring oscillator to capture kinetic energy from vibrations. It has an electrical transducer using induction between a moving coil and a fixed magnets. It uses a cantilever suspension and operates at a frequency range of 57-59 Hz. We re-designed it using 80 turns coil-chip instead of 30-turns. The springless VEH works in a frequency range of 13-18 Hz. It was redesigned to carry 60-turns coil-chip. The re-design of the VEHs successfully increased the output voltage and power. The maximum power experimentally measured were 14.3mW and 12.27mW at optimal loads RL of 40 ohm and 3 ohm, respectively. The power management circuits introduced is consist of a MOSFET-based full-wave bridge rectifier and a smoothing capacitor to convert the VEH AC output waveform into a DC signal. We found that this rectifier can effectively convert the VEHs output with high voltage and power efficiencies > 93 %. The smoothing capacitor trades-in the signal ripples for lower voltage and power e efficiencies > 79 %. We identified the model parameters for the cantilever VEH, namely the natural frequency, mechanical Qm and total Qt quality factors, and effective average magnetic field density B. We solved the model equations numerically and analytically to find the eigenvalues, frequency response, output voltage and power. The model results agree with the obtained experimental results.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectUltra-low power rectification circuiten
dc.subjectLow frequency energy harvesteren
dc.subjectElectromagnetic energy harvesteren
dc.subjectHarvester modelingen
dc.titleElectromagnetic Vibrational Energy Harvesters and Power Managementen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorYavuz, Mustafa
uws.contributor.advisorAbdel-Rahman, Eihab
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages