UWSpace will be migrating to a new version of its software from July 29th to August 1st. UWSpace will be offline for all UW community members during this time.

Show simple item record

dc.contributor.authorPanchal, Satyam
dc.contributor.authorDincer, Ibrahim
dc.contributor.authorAgelin-Chaab, Martin
dc.contributor.authorFraser, Roydon
dc.contributor.authorFowler, Michael
dc.date.accessioned2018-01-12 13:46:18 (GMT)
dc.date.available2018-01-12 13:46:18 (GMT)
dc.date.issued2017-06-01
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.005
dc.identifier.urihttp://hdl.handle.net/10012/12842
dc.descriptionThe final publication is available at Elsevier via http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.005 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractBoth measurement and modeling of thermal performance in lithium-ion battery cell are considered crucial as they directly affect the safety. Even though the operation of a lithium-ion battery cell is transient phenomena in most cases, most available thermal models for lithium-ion battery cell predicts only steady-state temperature fields. This paper presents a mathematical model to predict the transient temperature distributions of a large sized 20Ah-LiFePO4 prismatic battery at different C-rates. In this regard, the lithium-ion battery is placed in a vertical position on a stand inside the lab with an ambient air cooling and the battery is discharged under constant current rate of 1C, 2C, 3C, and 4C in order to provide quantitative data regarding thermal behavior of lithium-ion batteries. Additionally, IR images are taken for the same battery cell during discharging. The present model predictions are in very good agreement with the experimental data and also with an IR imaging for temperature profiles. The present results show that the increased C-rates result in increased temperatures on the principle surface of the battery. (C) 2017 Elsevier Ltd. All rights reserved.en
dc.language.isoenen
dc.publisherElsevieren
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHeat transferen
dc.subjectThermal analysisen
dc.subjectLithium-ion batteryen
dc.subjectElectrochemical modelen
dc.subjectTemperature distributionen
dc.titleTransient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite batteryen
dc.typeArticleen
dcterms.bibliographicCitationPanchal, S., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO 4 /graphite battery. International Journal of Heat and Mass Transfer, 109, 1239–1251. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.005en
uws.contributor.affiliation1Faculty of Engineeringen
uws.contributor.affiliation2Mechanical and Mechatronics Engineeringen
uws.typeOfResourceTexten
uws.typeOfResourceTexten
uws.peerReviewStatusRevieweden
uws.scholarLevelPost-Doctorateen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages