Show simple item record

dc.contributor.authorMuthreja, Aman
dc.date.accessioned2018-08-21 16:21:54 (GMT)
dc.date.available2019-08-22 04:50:17 (GMT)
dc.date.issued2018-08-21
dc.date.submitted2018-08-16
dc.identifier.urihttp://hdl.handle.net/10012/13625
dc.description.abstractDue to increasing rates of diabetes, non-invasive glucose monitoring systems will become critical to improving health outcomes for an increasing patient population. Bluetooth integration for such a system has been previously unattainable due to the prohibitive energy consumption. However, enabling Bluetooth allows for widespread adoption due to the ubiquity of Bluetooth-enabled mobile devices. The objective of this thesis is to demonstrate the feasibility of a Bluetooth-based energy-harvesting glucose sensor for contact-lens integration using 45~nm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The proposed glucose monitoring system includes a Bluetooth transmitter implemented as a two-point closed loop PLL modulator, a sensor potentiostat, and a 1st-order incremental delta-sigma analog-to-digital converter (IADC). This work details the complete system design including derivation of top-level specifications such as glucose sensing range, Bluetooth protocol timing, energy consumption, and circuit specifications such as carrier frequency range, output power, phase-noise performance, stability, resolution, signal-to-noise ratio, and power consumption. Three test chips were designed to prototype the system, and two of these were experimentally verified. Chip 1 includes a partial implementation of a phase-locked-loop (PLL) which includes a voltage-controlled-oscillator (VCO), frequency divider, and phase-frequency detector (PFD). Chip 2 includes the design of the sensor potentiostat and IADC. Finally, Chip 3 combines the circuitry of Chip 1 and Chip 2, along with a charge-pump, loop-filter and power amplifier to complete the system. Chip 1 DC power consumption was measured to be 204.8~$\mu$W, while oscillating at 2.441 GHz with an output power $P_{out}$ of -35.8 dBm, phase noise at 1 MHz offset $L(1\text{ MHz})$ of -108.5 dBc/Hz, and an oscillator figure of merit (FOM) of 183.44dB. Chip 2 achieves a total DC power consumption of 5.75~$\mu$W. The system has a dynamic range of 0.15~nA -- 100~nA at 10-bit resolution. The integral non-linearity (INL) and differential non-linearity (DNL) of the IADC were measured to be -6~LSB/$\pm$0.3~LSB respectively with a conversion time of 65.56~ms. This work achieves the best duty-cycled DC power consumption compared to similar glucose monitoring systems, while providing sufficient performance and range using Bluetooth.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectGlucoseen
dc.subjectCMOSen
dc.subjectBluetoothen
dc.subjectElectrochemicalen
dc.subjectContact Lensen
dc.title45-nm SOI CMOS Bluetooth Electrochemical Sensor for Continuous Glucose Monitoringen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorLong, John
uws.contributor.advisorLevine, Peter
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages