Show simple item record

dc.contributor.authorKeblawi, Amer
dc.date.accessioned2020-09-14 17:40:51 (GMT)
dc.date.available2021-09-15 04:50:08 (GMT)
dc.date.issued2020-09-14
dc.date.submitted2020-09-09
dc.identifier.urihttp://hdl.handle.net/10012/16293
dc.description.abstractThe automotive industry is rapidly developing more advanced vehicle propulsion systems, autonomous driving, emissions reduction, and improved fuel efficiency. Optimal control theory has evolved such that a system can be controlled in real-time based on values predicted by models over a control horizon. Controller performance depends on the accuracy of the predictive model. The purpose of this work is to develop acausal high-fidelity control-oriented plant models of engine air path components that simulate faster than real-time to design and tune the required controllers. The desired features of these models are that they be physics-based and use physically-meaningful design parameters. These features are desired to make these models extensible over different generations of the engine air path components. The considered engine in this work is the engine of the Toyota Prius 2015 Plug-in hybrid. An acausal mean value thermal engine block model is developed. The engine block model includes computations done on thermal effects in the engine block, engine air intake and exhaust streams, lubricant oil, and coolant. Model parameters are identified and validated experimentally. Acausal physics-based models, including spatial variation in variables, are introduced for the engine manifold and catalytic converter. The models are based on one-dimensional partial differential equations. A novel method based on orthogonal collocation is devised to model quasi-one-dimensional compressible flows inside engine manifolds. A similar methodology is used to model the catalytic converter, transforming the system of partial differential equations into a system of ordinary differential equations in state-space form. Both high fidelity models simulate faster than real-time. The developed models are showcased by designing and tuning a low-level engine shaft speed adaptive model predictive controller than can be used to control speed, e.g. in an adaptive cruise controller or autonomous car. The controller manipulates engine throttle and air to fuel ratio to achieve the desired engine shaft speed at minimal fuel consumption. The tuned Model Predictive controller is compared to a tuned PID controller by simulating a drive cycle followed by the Toyota engine.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectengine air path modellingen
dc.subjectengine manifold modelen
dc.subjectcatalytic converter modelen
dc.subjectengine controlsen
dc.subjectmaplesimen
dc.subjectmpcen
dc.subjectadaptive mpcen
dc.subjectorthogonal collocationen
dc.subjectone-dimensional PDEsen
dc.subjectlinear graph theoryen
dc.subjectthermal fluid acausal modelen
dc.titleAcausal Modelling of Thermal Fluid Systems with a Focus on Engine Air Path Componentsen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degree.disciplineSystem Design Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorMcPhee, John
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages