Show simple item record

dc.contributor.authorZareian, Samaneh
dc.date.accessioned2020-09-18 19:40:22 (GMT)
dc.date.available2020-09-18 19:40:22 (GMT)
dc.date.issued2020-09-18
dc.date.submitted2020-08-26
dc.identifier.urihttp://hdl.handle.net/10012/16327
dc.description.abstractThe present work aims to provide insight on the small- and full-scale models of building construction materials and structures in fire scenarios. Steps are taken toward a long-term goal, which is to develop a complete model for heat and mass transfer across walls and in compartments in case of fire. This is an important aspect of fire safety engineering in which, with the help of in-depth knowledge of the fire on the buildings and construction materials and numerical methods, a complete understanding of fire behaviour can be obtained. Therefore, applications can be used to design safe buildings, analyze fire risks, and develop optimized egress models. Experimental studies selected for the modelling are conducted at the University of Waterloo Fire Research Lab (UWFRL) for the validation and comparison of the simulation results. OpenFOAM, an open-source C++ toolbox for computational fluid dynamics modelling, is selected for modelling. In the first step, a small-scale heat transfer model presents the thermal prediction of construction materials at high temperatures in cone calorimeter tests. The model predicts the temperature well for two specimens exposed to constant and transient heat flux values. Improvements can be made using accurate thermophysical properties and a thermal contact model between layers of different materials. In the next step, a large-scale fire model is applied to an insulated compartment that is separated from another room by a steel wall, using Firefoam. Besides heat transfer, combustion, chemistry, and turbulence are included in the model. Large Eddy Simulation (LES) for turbulence, Finite Volume Discrete Ordinates Method (fvDOM) model for radiation and Eddy Dissipation Concept (EDC) for chemistry are employed. The model predicts the early stage of fire growth, but underpredicts the temperature during the decay phase. This tool can be used for future work as a first step toward a more sophisticated model for degrading and non-degrading wall assemblies in compartment fires.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectnumerical simulationsen
dc.subjectfire modellingen
dc.subjectheat transferen
dc.subjectLarge Eddy Simulationen
dc.subjectfire safetyen
dc.subjectcompartment fireen
dc.titleFire and Heat Transfer Modelling of Small and Large Scale Experimentsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorDevaud, Cecile
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages