Show simple item record

dc.contributor.authorDeutschman, Christopher
dc.date.accessioned2020-09-21 20:23:02 (GMT)
dc.date.available2020-09-21 20:23:02 (GMT)
dc.date.issued2020-09-21
dc.date.submitted2020-09-01
dc.identifier.urihttp://hdl.handle.net/10012/16344
dc.description.abstractThe primary goals of the work presented in this thesis were to better understand how metal nanoparticles (MNPs) affect antimicrobial activity, and to develop green synthesis protocols for the fabrication of nanocomposites designed specifically for antimicrobial applications. This work utilized a meta-analytical framework to mine data from recent literature and determine which MNP physiochemical properties dictate their antibacterial activity. Linear regression models revealed a size dependence for the antibacterial activity of silver MNPs, where smaller nanoparticles are more effective at combating Gram-negative E. coli (R2 = 40.3%, p < 0.001). In contrast, surface charge was determined to be the dominate physiochemical parameter in predicting the efficacy of silver MNPs against Gram-positive S. aureus, with potential secondary dependency on MNP size (R2 < 44%, p < 0.001 and < 0.05 for charge and size respectively). Better standardization in antimicrobial testing and reporting protocols will be critical in allowing for more powerful analyses in the future. Building off of the meta-analytical work, ecofriendly and cost effective synthesis protocols were developed to generate copper nanoparticles using cellulose nanocrystals and tannic acid. Cellulose nanocrystals provided an effective and environmentally benign base for silver and copper MNPs to be deposited using simple one-pot reduction. The developed one-pot synthesis method was also shown to be effective for the generation of silver/cellulose and copper/silver/cellulose nanomaterials. The final morphology of the copper/cellulose MNPs was found to be heavily dependent on the order of reagents during one-pot reduction, where coating of tannic acid on cellulose nanocrystals was a necessary first step to generate small and well-dispersed copper nanoparticles. The copper/cellulose composite was highly effective at suppressing the growth of S. cerevisiae microbes at a concentration of 25 µg/mL of copper.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleRational Design and Green Fabrication of Antimicrobial Metal Nanoparticle/Cellulose Nanocrystal Compositesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineering (Nanotechnology)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorTam, Michael
uws.contributor.advisorPope, Michael
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages