Show simple item record

dc.contributor.authorKahlon, Azeem Singh
dc.date.accessioned2021-12-20 18:12:11 (GMT)
dc.date.available2023-12-21 05:50:03 (GMT)
dc.date.issued2021-12-20
dc.date.submitted2021-12-09
dc.identifier.urihttp://hdl.handle.net/10012/17785
dc.description.abstractSurface roughness of both machined and additively manufactured components is a critical characteristic that ensures both functional requirements and efficient performance in many high-precision applications requiring precise surface morphologies such as those used in the aerospace and medical industry. Due to uncertainties and the complex nonlinear nature of hundreds of manufacturing process parameters ranging from melt pool temperature to velocity of the cutting tool, the surface roughness of the manufactured product is not controllable and hence requires post-processing. In this study, a system to remove material and reduce the surface roughness of physically hard-to-reach external and internal surfaces of a non-magnetic workpieces is designed, developed and tested for efficacy and flexibility. Unlike conventional Magnetic Abrasive Finishing (MAF), this technique does not involve any moving parts to impart rotating motion to either the electromagnet or the workpiece. The system works on the principle of generating Rotating Magnetic Fields (RMF) to manipulate the motion of Magnetic Abrasive Particles (MAPs) on the surface of a workpiece for material removal in the form of micro and nano scale chips. An optimal configuration of stationary electromagnets is activated using an FPGA control unit coupled with digital servomotor drives and a DC power supply to generate the required magnetic flux density in the working region. The magnetic field gradient can be significantly magnified by selecting an appropriate core tip shape from a selection of eleven different tip shapes resulting in reduced leakage of magnetic flux. The modular nature of the system allows the operator to change the core tip shapes, the orientation of coils, current, amplitude, frequency, and phase difference at any instant. Moreover, the entire setup is mounted on four caster wheels that can be easily moved and safely secured at any location. Finite element parametric optimization in Ansys Maxwell is used to design and fabricate a novel tapered electromagnet geometry optimized for maximum gradient of magnetic field on both axial and off-axial locations. The performance of the optimized geometry is validated via both analytical and experimental results with less than an average error of 10%. The novel electromagnet shape is designed to reduce the distance between adjacent coils and maintain a uniform distribution of magnetic field in the workspace. To quantify the effectiveness of this technique, different optimal electromagnet configurations are implemented on aluminum specimens subjected to six different abrasives and tested under a Laser scanning confocal microscope. The average surface roughness (Ra) is improved from 93% to 36% depending on the input process parameters, namely current, frequency and cycle time.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.titleMagnetic Field Assisted Abrasive Polishingen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms2 yearsen
uws.contributor.advisorKhamesee, Behrad
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages