Show simple item record

dc.contributor.authorGhiasi, Yusof
dc.contributor.authorDuguay, Claude R.
dc.contributor.authorMurfitt, Justin
dc.contributor.authorYuhau, Wu (Mark)
dc.contributor.authorAsgarimehr, Milad
dc.date.accessioned2023-06-19 17:52:04 (GMT)
dc.date.available2023-06-19 17:52:04 (GMT)
dc.date.issued2023-05-14
dc.identifier.urihttp://hdl.handle.net/10012/19567
dc.description.abstractThis study introduces the first use of Global Navigation Satellite System Reflectometry (GNSS-R) for monitoring lake ice phenology. This is demonstrated using Qinghai Lake, Tibetan Plateau, as a case study. Signal-to-Noise Ratio (SNR) values obtained from the Cyclone GNSS (CYGNSS) constellation over four ice seasons (2018 to 2022) were used to examine the impact of lake surface conditions on reflected GNSS signals during open water and ice cover seasons. A moving t-test (MTT) algorithm was applied to time-varying SNR values allowing for the detection of lake ice at daily temporal resolution. Strong agreement is observed between ice phenology records derived from CYGNSS and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Differences during freeze-up (i.e., the period starting with the first appearance of ice on the lake until the lake becomes fully ice covered) ranged from 3 to 21 days with a mean bias error (MBE) and mean absolute error (MAE) of 10 days, while those during breakup (i.e., the period beginning with the first pixel of open water and ending when the whole lake becomes ice-free) ranged from 3 to 18 days (MBE and MAE: 6 and 7 days, respectively). Observations during the breakup period revealed the sensitivity of GNSS reflected signals to the onset of surface (snow and ice) melt before the appearance of open water conditions as determined from MODIS. While the CYGNSS constellation is limited to the coverage of lakes between 38° S and 38° N, the approach presented herein will be applicable to data from other GNSS-R missions that provide opportunities for the monitoring of ice phenology from large lakes globally (e.g., Spire constellation of satellites).en
dc.description.sponsorshipThis research was undertaken thanks, in part, with support from the Global Water Futures Program funded by the Canada First Research Excellence Fund (CFREF)”en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.relation.ispartofseriesGlobal Water Futures;
dc.subjectGWF ASOM 2023en
dc.titleMonitoring lake ice phenology from CYGNSS: Algorithm development and assessment using Qinghai Lake, Tibet Plateau, as a case studyen
dc.typeConference Posteren
dcterms.bibliographicCitationGhiasi, Y., Duguay, C.R., Murfitt, J. Yuhao, W. & Asgarimehr, M. (2023). Monitoring lake ice phenology from CYGNSS: Algorithm development and assessment using Qinghai Lake, Tibet Plateau, as a case study. Global Water Futures (GWF) Annual Open Science Meeting Conference. University of Waterloo.en
uws.contributor.affiliation1Faculty of Environmenten
uws.contributor.affiliation2Geography and Environmental Managementen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelOtheren


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages