Show simple item record

dc.contributor.authorSmirnov, Alexey
dc.date.accessioned2024-05-13 13:51:54 (GMT)
dc.date.available2024-05-13 13:51:54 (GMT)
dc.date.issued2024-05-13
dc.date.submitted2024-05-09
dc.identifier.urihttp://hdl.handle.net/10012/20557
dc.description.abstractTotal variation plays an important role in the analysis of stability and convergence of numerical solutions for one-dimensional scalar conservation laws. However, extending this approach to two or more spatial dimensions presents a formidable challenge. Existing literature indicates that total variation diminishing solutions for two-dimensional hyperbolic equations are limited to at most first-order accuracy. The presented research contributes to overcoming the challenges associated with extending total variation to higher dimensions, particularly in the context of hyperbolic conservation laws. By addressing the limitations of conventional discrete total variation definitions, we seek answers to critical questions associated with the total variation diminishing property of solutions of scalar conservation laws in multiple spatial dimensions. We adopt a more accurate dual discrete definition of total variation, recently proposed in Condat, L. (2017) Discrete total variation: New definition and minimization, SIAM Journal on Imaging Sciences, 10(3), 1258-1290, for measuring the total variation of grid-based functions. Dual total variation can be computed as a solution to a constrained optimization problem. We propose a set of conditions on the coefficients of a general five-point scheme so that the numerical solution is total variation diminishing in the dual discrete sense and validate that through numerical experiments. Apart from the contributions to the analysis of numerical methods for two-dimensional scalar conservation laws, we develop an algorithm to efficiently compute the dual discrete total variation and develop an imaging method, based on this algorithm. We study its performance in computed tomography image reconstruction and compare it with the state-of-the-art total variation minimization-based imaging methods.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://drive.mathworks.com/sharing/b6c1b9a0-141a-4573-b0c4-77aa1d55b5b9/en
dc.subjecthyperbolic conservation lawsen
dc.subjecttotal variation diminishing schemesen
dc.subjecthigh-order methodsen
dc.subjectcomputed tomographyen
dc.titleDiscrete total variation in multiple spatial dimensions and its applicationsen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws-etd.embargo.terms0en
uws.contributor.advisorKrivodonova, Lilia
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages