Show simple item record

dc.contributor.authorWang, Jingjing
dc.date.accessioned2024-05-21 15:53:13 (GMT)
dc.date.available2024-05-21 15:53:13 (GMT)
dc.date.issued2024-05-21
dc.date.submitted2024-05-16
dc.identifier.urihttp://hdl.handle.net/10012/20578
dc.description.abstractNovelty detection, a fundamental task in the field of machine learning, has drawn a lot of recent attention due to its wide-ranging applications and the rise of neural approaches. In this thesis, we present a general framework for neural novelty detection that centers around a multivariate extension of the univariate quantile function. Our general framework unifies and extends many classical and recent novelty detection algorithms, and opens the way to exploit recent advances in flow-based neural density estimation. We adapt the multiple gradient descent algorithm to obtain the first efficient end-to-end implementation of our framework that is free of tuning hyperparameters. Extensive experiments over a number of synthetic and real datasets confirm the efficacy of our proposed method against state-of-the-art alternatives.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectnovelty detectionen
dc.subjectmultivariate quantileen
dc.subjectnormalizing flowen
dc.titleMultivariate Triangular Quantile Maps for Novelty Detectionen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws-etd.embargo.terms0en
uws.contributor.advisorYu, Yaoliang
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages