Show simple item record

dc.contributor.authorEbeid, Nevine Maurice 20:28:14 (GMT) 20:28:14 (GMT)
dc.description.abstractIt is essential to secure the implementation of cryptosystems in embedded devices agains side-channel attacks. Namely, in order to resist differential (DPA) attacks, randomization techniques should be employed to decorrelate the data processed by the device from secret key parts resulting in the value of this data. Among the countermeasures that appeared in the literature were those that resulted in a random representation of the key known as the binary signed digit representation (BSD). We have discovered some interesting properties related to the number of possible BSD representations for an integer and we have proposed a different randomization algorithm. We have also carried our study to the $\tau$-adic representation of integers which is employed in elliptic curve cryptosystems (ECCs) using Koblitz curves. We have then dealt with another randomization countermeasure which is based on randomly splitting the key. We have investigated the secure employment of this countermeasure in the context of ECCs.en
dc.format.extent1642177 bytes
dc.publisherUniversity of Waterlooen
dc.subjectBinary signed-digit representationsen
dc.subjectDPA countermeasuresen
dc.subjecttau-adic representationen
dc.titleKey Randomization Countermeasures to Power Analysis Attacks on Elliptic Curve Cryptosystemsen
dc.typeDoctoral Thesisen
dc.subject.programElectrical and Computer Engineeringen and Computer Engineeringen
uws-etd.degreeDoctor of Philosophyen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages