Show simple item record

dc.contributor.authorMacLean, Angela
dc.date.accessioned2009-09-30 20:57:33 (GMT)
dc.date.available2009-09-30 20:57:33 (GMT)
dc.date.issued2009-09-30T20:57:33Z
dc.date.submitted2009-09-30
dc.identifier.urihttp://hdl.handle.net/10012/4767
dc.description.abstractConcerns regarding climate change have brought about an increased interest in cold region hydrology, leading to the formation of the IP3 research network. This work is part of the IP3 Network, which has the overall goal to evaluate and demonstrate improved predictions of hydrological and atmospheric fields for cold regions. As such this thesis involves a series of calibration and validation experiments on the MESH hydrological model (used by IP3 for predictions) with two cold region case studies. The first case study is the very well instrumented Reynolds Creek Experimental Watershed in Idaho, USA and the second case study is the Wolf Creek watershed in the Yukon Territory. As the MESH model is still in the development phase, a critical component of model development is a thorough analysis of model setup and performance. One intention of this research is to provide feedback for future development of the MESH hydrological model. The Reynolds Creek site was modeled as part of this thesis work. This site was chosen based on the long term, highly distributed and detailed data set. The second site, Wolf Creek, was used for a simplified case study. Models of both case study sites were calibrated and validated to carefully evaluate model performance. Reynolds Creek was calibrated as a single objective problem as well as multi-objective problem using snow water equivalent data and streamflow data for multiple sites. The hydrological simulations for Wolf Creek were fair; further calibration effort and a more detailed examination of the model setup would have likely produced better results. Calibration and validation of Reynolds Creek produced very good results for streamflow and snow water equivalent at multiple sites though out the watershed. Calibrating streamflow generated a very different optimal parameter set compared to calibrating snow water equivalent or calibrating to both snow water equivalent and streamflow in a multi-objective framework. A weighted average multi-objective approach for simultaneously calibrating to snow water equivalent and streamflow can be effective as it yields a reasonable solution that improves the single objective snow water equivalent results without degrading the single objective streamflow results.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectHydrological Modelingen
dc.subjectAutomatic calibrationen
dc.titleCalibration and Analysis of the MESH Hydrological Model applied to Cold Regionsen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programCivil Engineeringen
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages