Show simple item record

dc.contributor.authorLi, Sen
dc.date.accessioned2010-11-24 21:15:47 (GMT)
dc.date.available2010-11-24 21:15:47 (GMT)
dc.date.issued2010-11-24T21:15:47Z
dc.date.submitted2010
dc.identifier.urihttp://hdl.handle.net/10012/5637
dc.description.abstractSelf-adaptive software is a closed-loop system that tries to manage, direct, or regulate its own behavior dynamically. Such a system aims at providing an automated and systematic approach to handling the increasing complexity of operation management. Mission-critical systems (e.g., e-business and telecommunication systems) are usually large, complex, and distributed. These systems must preserve their Quality of Service (QoS) at runtime under highly dynamic and non-deterministic conditions; therefore, they are suitable candidates for being equipped with self-adaptive capabilities. Although significant efforts have been devoted to modeling, designing, developing and deploying self-adaptive software since a decade ago, there is still a lack of well-established concrete processes for evaluating such systems. This dissertation proposes a systematic evaluation process for mission-critical self-adaptive software systems. The process is a well-defined testing approach that needs a post-mortem analysis, takes the quantified QoS requirements as inputs, and comprises two main phases: i) conducting system-level testing, and ii) evaluating QoS requirements satisfaction. The process uses Service Level Agreements (SLAs) as quantified QoS requirements, and consequently as the adaptation requirements of mission-critical systems. Adaptation requirements are specific types of requirements used to engineer self-adaptive software. Moreover, for the first phase, the dissertation discusses the uniqueness and necessity of conducting system-level load and stress testing on a self-adaptive software system, for collecting runtime QoS data. In the second phase, the process makes use of utility functions to generate a single value indicating the QoS satisfaction of the evaluated system. The dissertation mainly focuses on evaluating the performance, availability and reliability characteristics of QoS. An open source service-oriented Voice over IP (VoIP) application was selected as a case study. The VoIP application was transformed into a self-adaptive software system with various types of adaptation mechanisms. A set of empirical experiments was performed on the developed self-adaptive VoIP application, and the proposed process was adopted for evaluating the effectiveness of different adaptation mechanisms. To this end, the dissertation defines a sample SLA for the VoIP application, presents a report on the load and stress testing performed on the self-adaptive VoIP application, and presents a set of utility functions for evaluation. The experiments illustrate the validity, reliability, flexibility, and cost of the proposed evaluation process. In sum, this dissertation introduces a novel evaluation process for mission-critical self-adaptive software systems, and shows that the proposed process can help researchers to systematically evaluate their self-adaptive systems.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectSelf-adaptive softwareen
dc.subjectEvaluationen
dc.titleEvaluating Mission-Critical Self-Adaptive Software Systems: A Testing-Based Approachen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages