Show simple item record

dc.contributor.authorIbrahim, Elfaitori
dc.date.accessioned2013-01-18 17:08:44 (GMT)
dc.date.available2013-01-18 17:08:44 (GMT)
dc.date.issued2013-01-18T17:08:44Z
dc.date.submitted2012
dc.identifier.urihttp://hdl.handle.net/10012/7216
dc.description.abstractThe actual service loading histories of most engineering components are characterized by variable amplitudes and are sometimes rather complicated. The goal of this study was to estimate the fatigue life of nickel-chromium-molybdenum 30CrNiMo8HH steel alloy under axial and pure torsion variable amplitude loading (VAL) conditions. The investigation was directed at two primary factors that are believed to have an influence on fatigue life under such loading conditions: load sequence and mean stress. The experimental work for this research included two-step loading, non-zero mean strain loading, and VAL tests, the results of which were added to previously determined fully reversed strain-controlled fatigue data. The effect of load sequence on fatigue life was examined through the application of the commonly used linear damage accumulation rule along with the Manson and Marco–Starkey damage accumulation methods, the latter of which takes load sequence into account. Based on the two-step experimental results, both the Manson and Marco–Starkey methods were modified in order to eliminate the empirically determined constants normally required for these two methods. The effect of mean stress on fatigue life was investigated with the use of three life prediction models: Smith–Watson–Topper (SWT), Fatemi–Socie (FS), and Jahed–Varvani (JV). The cycles from the VAL histories were counted using a rainflow counting procedure that maintains the applied strain sequence, and a novel method was developed for the estimation of the total energy density required for the JV model. For two-step loading and for all three fatigue models employed, the modified damage accumulation methods provided superior fatigue life predictions. However, regardless of the damage accumulation method applied, the most satisfactory fatigue life correlation for VAL was obtained using the energy-based JV model.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectFatigue lifeen
dc.subjectVariable amplitude loadingen
dc.subjectDamage accumulationen
dc.subjectLoad sequenceen
dc.subjectMean stressen
dc.subjectCycle countingen
dc.titleFatigue Life Assessment of 30CrNiMo8HH Steel Under Variable Amplitude Loadingen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programMechanical Engineeringen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages