Show simple item record

dc.contributor.authorRose, Kalpana
dc.date.accessioned2013-02-25 18:51:08 (GMT)
dc.date.available2013-02-25 18:51:08 (GMT)
dc.date.issued2013-02-25T18:51:08Z
dc.date.submitted2013
dc.identifier.urihttp://hdl.handle.net/10012/7376
dc.description.abstractPurpose To investigate the impact of cigarrete smoking in a group of otherwise healthy young individuals on: 1) Retinal blood flow using Doppler based SD-OCT, 2) Retinal vascular reactivity using a gas sequencer to provoke hypercapnia via constant changes in PETCO2 (end-tidal partial pressure of CO2) and in PETO2 (end-tidal partial pressure of O2). Methods An automated gas flow controller was used to achieve normoxic hypercapnia in ten non-smokers (mean age 28.9 yrs, SD 4.58) and nine smokers (mean age 27.55 yrs, SD 4.77). Retinal blood flow measurements were obtained using Doppler OCT and cannon laser blood flowmeter (CLBF) during baseline, normoxic hypercapnia (15% increase in PETCO2 relative to homeostatic baseline) and post-hypercapnia in both the groups. Exhaled carbon monoxide level was measured in all subjects. Results In non-smokers, retinal arteriolar diameter, blood velocity and flow increased by +4.1% (SD 2.8, p<0.0001), +16.7% (SD 14.6, p=0.0004) and +29.6% (SD 12.5, p<0.0001) respectively, during normoxic hypercapnia; Similarly, the venous area, venous velocity and total retinal blood flow increased by 7% (SD 8.6, p=0.0418), 18.1% (SD 20.8, p=0.0068) and 26% (SD 22.9, p<0.0001) respectively. In smokers, normoxic hypercapnia resulted in a significant increase in velocity by 12.0% (SD 6.2, p=0.0019) and flow by 14.6% (SD 9.5, p=0.0029); though arteriolar diameter increased by 1.7% (SD 1.7, p=0.2616), the result was not statistically significant. Total retinal blood flow increased significantly by 19.3% (SD 18.4, p=0.002) in response to normoxic hypercapnia. However, there was no significant difference in venous area (p=0.3322) and venous velocity measurements (p=0.1185) during hypercapnia compared to baseline and recovery. Comparing smokers and non-smokers, only the percentage change in arteriolar diameter (p=0.0379) and flow (p=0.0101) was significantly different among the groups. Group mean PETCO2 was increased by 15.9% in the non-smoking group and by 15.7% in the smoking group, with a concomitant increase in PETO2 by approximately 1.5 to 2% in both groups. There was no significant difference in baseline PETCO2 level between smokers and non-smokers. Conclusions Retinal vascular reactivity in response to normoxic hypercapnia is significantly reduced in young healthy individuals who smoke compared to non-smokers. Further studies are needed to elucidate the exact reason behind the impaired retinal autoregulation to provocative stimuli in smokers.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectVascular reactivityen
dc.subjectBlood flowen
dc.subjectSmokersen
dc.subjectDoppler SDOCTen
dc.titleRetinal Blood Flow and Vascular Reactivity in Chronic Smokersen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programVision Scienceen
uws-etd.degree.departmentSchool of Optometryen
uws-etd.degreeMaster of Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages