Show simple item record

dc.contributor.authorIlievski, Marko
dc.date.accessioned2020-10-01 17:36:13 (GMT)
dc.date.available2020-10-01 17:36:13 (GMT)
dc.date.issued2020-10-01
dc.date.submitted2020-09-29
dc.identifier.urihttp://hdl.handle.net/10012/16422
dc.description.abstractRapid advances in every sphere of autonomous driving technology have intensified the need to be able to benchmark and compare different approaches. While many benchmarking tools tailored to different sub-systems of an autonomous vehicle, such as perception, already exist, certain aspects of autonomous driving still lack the necessary depth and diversity of coverage in suitable benchmarking approaches - autonomous vehicle motion planning is one such aspect. While motion planning benchmarking tools are abundant in the robotics community in general, they largely tend to lack the specificity and scope required to rigorously compare algorithms that are tailored to the autonomous vehicle domain. Furthermore, approaches that are targeted at autonomous vehicle motion planning are generally either not sensitive enough to distinguish subtle differences between different approaches, or not able to scale across problems and operational design domains of varying complexity. This work aims to address these issues by proposing WiseBench, an autonomous vehicle motion planning benchmark framework aimed at comprehensively uncovering fine and coarse-grained differences in motion planners across a wide range of operational design domains. WiseBench outlines a robust set of requirements for a suitable autonomous vehicle motion planner. These include simulation requirements that determine the environmental representation and physics models used by the simulator, scenario-suite requirements that govern the type and complexity of interactions with the environment and other traffic agents, and comparison metrics requirements that are geared towards distinguishing the behavioral capabilities and decision making processes of different motion planners. WiseBench is implemented using a carefully crafted set of scenarios and robust comparison metrics that operate within an in-house simulation environment, all of which satisfy these requirements. The benchmark proved to be successful in comparing and contrasting two different autonomous vehicle motion planners, and was shown to be an effective measure of passenger comfort and safety in a real-life experiment. The main contributions of our work on WiseBench thus include: a scenario creation methodology for the representative scenario suite, a comparison methodology to evaluate different motion planning algorithms, and a proof-of-concept implementation of the WiseBench framework as a whole.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectWiseBenchen
dc.subjectAutonomous Vehicleen
dc.subjectBenchmarkingen
dc.subjectMotion Planningen
dc.titleWiseBench: A Motion Planning Benchmarking Framework for Autonomous Vehiclesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorCzarnecki, Krzysztof
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages