Show simple item record

dc.contributor.authorZhao, Boxuan
dc.date.accessioned2022-04-29 17:25:45 (GMT)
dc.date.available2022-04-29 17:25:45 (GMT)
dc.date.issued2022-04-29
dc.date.submitted2022-04-14
dc.identifier.urihttp://hdl.handle.net/10012/18203
dc.description.abstractUltra-high strength steel (UHSS) such as Al-Si coated 22MnB5 are commonly used in the hot forming die quenching (HFDQ) process to produce light-weight automotive parts while maintaining good crashworthiness. The steel blank is typically austenitized in a roller hearth furnace, according to independently set heating zones and other parameters such as roller speed and part spacing. Most often these parameters are chosen heuristically based on experience, resulting in sub-optimal efficiency and part quality. To improve process efficiency and ensure complete austenitization before forming, a complete thermal-metallurgical furnace model that predicts the blank heating profile and the austenitization progress inside a roller hearth furnace is needed. This work introduces a framework for the furnace model, then evaluates three candidate austenitization submodels of different levels of complexity, including: a first order (F1) kinetics model, an Internal State Variable (ISV) model, and a phenomenological model. To address the drawbacks of conventional goodness-of-fit model derivation and evaluation method, the Bayesian model selection technique is introduced and used to evaluate the three candidates. This technique considers the uncertainties in the data, and the trade-off between model complexity and accuracy. Dilatometry data is used to calibrate the models and validate them. The selected austenitization submodel, ISV model, is integrated into the overall furnace model and its performance is validated using roller hearth furnace trials collected with instrumented blanks. The resultant coupled thermo-metallurgical furnace model provides a useful tool for researchers and industrial engineers to maximize production rate and ensure consistent part quality.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjecthot stampingen
dc.subjectroller hearth furnaceen
dc.subject22MnB5 steelen
dc.titleDeveloping and Improving a Thermometallurgical Model for 22MnB5 Steel in a Roller Hearth Furnaceen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorDaun, Kyle
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages