Show simple item record

dc.contributor.authorParham, Natalie
dc.date.accessioned2022-09-01 18:59:07 (GMT)
dc.date.available2022-09-01 18:59:07 (GMT)
dc.date.issued2022-09-01
dc.date.submitted2022-08-20
dc.identifier.urihttp://hdl.handle.net/10012/18702
dc.description.abstractConstant-depth quantum circuits, or shallow quantum circuits, have been shown to exhibit behavior that is uniquely quantum. This thesis explores the power and limitations of constant-depth quantum circuits, in particular as they compare to constant-depth classical circuits. We start with a gentle introduction to shallow quantum and classical circuit complexity, and we review the hardness of sampling from the output distribution of a constant-depth quantum circuit. We then give an overview of the shallow circuit advantage from the 1D Magic Square Problem from [Bravyi, Gosset, Koenig, Tomamichel 2020]. The first novel contribution is an investigation into the limitations of shallow quantum circuits for local optimization problems. We prove that if a shallow quantum circuit's input/output relation is exactly that of a local optimization problem, then we can construct a shallow classical circuit that also solves the optimization problem. We also prove an approximate version of this statement. Finally, we introduce a novel sampling task over an n-bit distribution D_n such that there exists a shallow quantum circuit that takes as input the state \ket{\GHZ_n} = \frac{1}{\sqrt{2}}(\ket{0^n} + \ket{1^n}) and produces a distribution close to D_n whereas, any constant-depth classical circuit with bounded fan-in and n + n^\delta random input bits for some \delta<1, will produce a distribution that is not close to D_n.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectquantumen
dc.subjectshallow quantum circuitsen
dc.subjectcomplexity theoryen
dc.subjectmathen
dc.titleOn the Power and Limitations of Shallow Quantum Circuitsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimization (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws-etd.embargo.terms0en
uws.contributor.advisorGosset, David
uws.contributor.advisorLaflamme, Raymond
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages