Show simple item record

dc.contributor.authorOmidi, Mohammadhadi
dc.date.accessioned2024-02-22 21:15:33 (GMT)
dc.date.available2024-02-22 21:15:33 (GMT)
dc.date.issued2024-02-22
dc.date.submitted2024-01-15
dc.identifier.urihttp://hdl.handle.net/10012/20362
dc.description.abstractThe performance of machine-learning applications heavily relies on the choice of the underlying hardware architecture, encompassing factors such as computational power, scalability, memory, and storage capabilities. These hardware choices significantly impact the efficiency and effectiveness of machine-learning systems. Resource-intensive programs can lead to competition for system resources, causing delays, while inefficient resource usage can saturate resources and harm user experience. To address resource variation among applications, resource sharing is implemented, allowing applications to dynamically allocate resources as needed, promoting efficient resource utilization. However, resource-allocation strategies often prioritize performance, potentially overlooking fairness among users or applications, especially in shared environments. Balancing performance optimization and fair resource-allocation is a complex challenge, requiring mechanisms that encourage resource sharing, prevent envy, and ensure a fair distribution of resources. Incorporating these characteristics promotes collaboration, minimizes negative emotions, and prioritizes the well-being of all participants in the system. This research introduces an innovative resource-allocation mechanism that addresses shortcomings in traditional methods. Our method prioritizes both fairness and efficiency in resource distribution, utilizing a token-based mechanism to ensure fairness and implementing individual preferences based on learned thresholds through an Actor-Critic method to improve efficiency. A computer simulation involving 40 accelerators and 20 agents in different environments demonstrates a performance improvement 1.28× compared to standard approaches. This study contributes by shedding light on the complex challenges of resource- allocation in heterogeneous systems and providing a practical solution with our approach.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectheterogeneous systemsen
dc.subjectmulti-agent systemsen
dc.subjectgame theoryen
dc.subjectcloud systemsen
dc.subjecthardware acceleratorsen
dc.titleFair and Efficient Resource Scheduling in Heterogeneous Multi-Agent Systemsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorKapre, Nachiket
uws.contributor.advisorZahedi, Seyed Majid
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages